
Non-perturbative Predictions for
Cold Atom Bose Gases  with
Tunable Interactions
Fred   Cooper
Chih-Chun   Chien
Bogdan   Mihaila
John F.  Dawson
Eddy   Timmermans

SFI WORKING PAPER:  2010-12-038

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent theviews of the Santa Fe Institute.  We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print.  Except for papers by our externalfaculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, orfunded by an SFI grant.©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensuretimely distribution of the scholarly and technical work on a non-commercial basis.   Copyright and all rightstherein are maintained by the author(s). It is understood that all persons copying this information willadhere to the terms and constraints invoked by each author's copyright. These works  may  be reposted onlywith the explicit permission of the copyright holder.www.santafe.edu

SANTA FE INSTITUTE

 



Non-perturbative predictions for cold atom Bose gases with

tunable interactions

Fred Cooper,1, 2 Chih-Chun Chien,3 Bogdan

Mihaila,3 John F. Dawson,3 and Eddy Timmermans3

1
Los Alamos National Laboratory, Los Alamos, NM 87545

2
Santa Fe Institute, Santa Fe, NM 87501

3
Department of Physics, University of New Hampshire, Durham, NH 03824

Abstract

We derive a theoretical description for dilute Bose gases as a loop expansion in terms of

composite-field propagators by rewriting the Lagrangian in terms of auxiliary fields related to

the normal and anomalous densities. We demonstrate that already in leading order this non-

perturbative approach describes a large interval of coupling-constant values, satisfies Goldstone’s

theorem, yields a Bose-Einstein transition that is second-order, and is consistent with the critical

temperature predicted in the weak-coupling limit by the next-to-leading order large-N expansion.
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Nearly a century after the first observation of the lambda transition in liquid helium[1],

a quantitative, first-principles description of strongly-correlated bosons remains a challenge.

After the transition was recognized as the onset of superfluidity[2], the connection with Bose-

Einstein condensation (BEC) was proposed[3], but it was Bogoliubov’s work[4] pointing

out that the dispersion of the elementary BEC excitations satisfy the Landau criterion

for superfluidity[5] that motivated weakly-interacting BEC studies to investigate superfluid

properties. In weakly-interacting systems, the many-body properties do not depend on the

shape of the interaction potential, but only on the s-wave scattering length, a0, and the

boson fluid acts as point-like interacting particles[6].

Unlike liquid helium, cold atoms remain point-like even when the scattering length is

tuned near a Feshbach resonance. Then, strongly-correlated cold atom bosons offer the ex-

citing prospect of studying point-like strongly interacting bosons, possibly in the universal

regime where the scattering length greatly exceeds the inter-particle distance and the latter

becomes the only relevant length scale[7]. This hope appeared thwarted when it was shown

that the three-body loss rate in cold atom traps scales as a40 near a Feshbach resonance[8].

In accordance, the universal regime was reached only in ultra-cold fermionic gases[9], where

the three-body loss is reduced by virtue of the Pauli exclusion principle. However, the recent

observation that three-body losses are strongly suppressed in optical lattices when the aver-

age number of bosons per site is two or less[10], rekindles the prospect of studying medium

and strongly-correlated cold atom bosons. Novel cold-atom trap technologies that produce

stable, flat potentials bound by a sharp edge[11], suggest the study of finite-temperature

properties such as the BEC transition temperature Tc and the superfluid to normal fluid

ratio and depletion, at fixed density, ρ.

At finite temperature, the description of BEC’s remains a challenge even in the weakly-

interacting regime. Standard approximations such as the Hartree-Fock-Bogoliubov and the

Popov schemes, generally fall within the Hohenberg and Martin classification[12] of conserv-

ing and gapless approximations, which implies that they either violate Goldstone’s theorem

or general conservation laws[13]. These approximations generally predict the BEC transition

to be a first-order transition, whereas we expect the transition to be second order[14].

In this paper, we present a new theoretical framework that describes a large interval

of ρ1/3a0-values, satisfies Goldstone’s theorem and yields a Bose-Einstein transition that is

second-order, while also predicting reasonable values for the depletion. Furthermore, this
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framework can predict all experimentally relevant quantities within the same calculation,

determining fully consistently quantities such as Tc, the collective mode frequencies[15] and

the compressibility (which characterizes the density profile in a shallow trap[16]). In contrast

with other resummation schemes, such as the large-N expansion[17] or functional renormal-

ization techiques[18], here we treat the normal and anomalous densities on equal footing.

In our approach, we generate a one-parameter family of equivalent Lagrangians. We

choose this parameter to reproduce the one-loop result at mean-field level in the weakly-

interacting limit. Thus, we identify the optimal auxiliary-field Lagrangian for the purpose

of a systematic non-perturbative expansion. Then, the critical temperature variation in

leading order is the same as the one found in the next-to-leading order large-N expansion.

In dilute bosonic gas systems, the classical action is given by S[φ, φ∗ ] =
�
dx L[φ, φ∗ ],

with dx ≡ dt d3x and the Lagrangian density

L[φ, φ∗ ] =
i�
2
[φ∗(x) (∂t φ(x))− (∂t φ

∗(x))φ(x) ]

− φ∗(x)
�
−�2∇2

2m
− µ

�
φ(x)− λ

2
|φ(x)|4 . (1)

Here, µ is the chemical potential and the coupling is λ = 4π�2 a0/m. To account for the

contributions of the normal and anomalous densities, we use the Hubbard-Stratonovitch

transformation[19] to introduce the real and complex auxiliary fields (AF), χ(x) and A(x).

We add to Eq. (1) the AF Lagrangian density[20, 21]

Laux[φ, φ
∗, χ, A,A∗] =

1

2λ

�
χ(x)− λ cosh θ |φ(x)|2

�2

− 1

2λ

��A(x)− λ sinh θ φ2(x)
��2 , (2)

where θ is the mixing parameter between the normal and anomalous densities, χ(x) and

A(x). The usual large-N approximation[21] is obtained when θ = 0. Then, the action

becomes

S[Φ, J ] = S[φa, χ, A,A
∗, ja, s, S] (3)

= −1

2

��
dx dx� φa(x)G

−1a
b[χ,A](x, x

�)φb(x�)

+

�
dx

� �
χ2(x)− |A(x)|2

�
/(2λ)− s(x)χ(x)

+ S∗(x)A(x) + S(x)A∗(x) + j∗(x)φ(x) + j(x)φ∗(x)
�
,
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with

G−1a
b[χ,A] =

�
G−1

0
a
b + V a

b[χ,A](x)
�
δ(x, x�) ,

G−1
0

a
b =




h0 0

0 h∗
0



 , h0 = −�2∇2

2m
− i� ∂

∂t
− µ , (4)

V a
b[χ,A](x) =



 χ(x) cosh θ −A(x) sinh θ

−A∗(x) sinh θ χ(x) cosh θ



 .

Here, we introduced a two-component notation with φa(x) = {φ(x), φ∗(x) } for a = 1, 2.

Φ(x) and J(x) signify the five-component fields and currents. The generating functional for

connected graphs is

Z[J ] = eiW [J ]/� = N
�

DΦ eiS[Φ;J ]/� ,

with S[Φ; J ] given by Eq. (3). Performing the path integral over the fields φa, we obtain the

effective action

� Seff[χ; J, �] =
1

2

��
dx dx� ja(x)G[χ]ab(x, x

�) ja(x)

+

�
dx

� χi(x)χi(x)

2λ
− Si(x)χ

i(x)− �
2i
Tr ln[G−1 ]

�
,

where χi(x) =
�
χ(x), A(x)/

√
2, A∗(x)/

√
2
�
, Si(x) =

�
s(x), S(x)/

√
2, S∗(x)/

√
2
�
. The small

parameter � allows us to perform the remaining path integral over χi using the stationary-

phase approximation. As shown in Ref.20, � counts loops in the AF propagator in analogy

with �, and provides the loop expansion of the effective action in terms of χ propaga-

tors. Next, we expand the effective action about the stationary points, χi
0(x), defined by

δSeff[χ; j]/δχi(x) = 0. Hence, we obtain

χ0(x)

λ
=

�
|φ0(x)|2 +

�
2i

Tr[G(x, x) ]
�
cosh θ + s(x) ,

A0(x)

λ
=

�
φ2
0(x) +

�
i
G2

1(x, x)
�
sinh θ + S(x) ,

where we introduced the notations

φa
0[χ0](x) =

�
dx� G[χ0]

a
b(x, x

�) jb(x�) .

We emphasize that both χ0 and A0 include self-consistent fluctuations. Expanding the
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effective action about the stationary point, we write

Seff[χ; J ] = Seff[χ0; J ] +
1

2

��
d4x d4x� D−1

ij [χ0](x, x
�)

× [χi(x)− χi
0(x)] [χ

j(x�)− χj
0(x

�)] + · · · , (5)

where D−1
ij (x, x�) is given by the second-order derivatives,

D−1
ij [χ0](x, x

�) =
δ2 Seff[χa]

δχi(x) δχj(x�)

����
χ0

,

evaluated at the stationary points. By keeping the gaussian fluctuations and Legendre

transforming, the one-particle irreducible (1-PI) graphs generating functional

Γ[Φ] =

�
dx jα(x)φ

α(x)−W [J ] (6)

=
1

2

��
dx dx� φa(x)G

−1[χ]ab(x, x
�)φb(x�)

−
�

dx
� χi(x)χi(x)

2λ
− �

2i
Tr

�
ln[G−1[χ](x, x) ]

�

− � �
2i

Tr ln[D−1
ii [Φ](x, x) ]

�
+ · · · ,

is the negative of the classical action plus self-consistent one-loop corrections in the φa and

χi propagators.

To leading order in the AF loop expansion (LOAF), one sets � = 0 in the right-hand-side

of (6). The static part of the effective action per unit volume is

Veff[Φ] = (χ cosh θ − µ ) |φ|2 − 1

2
(A∗ φ2 + Aφ∗ 2) sinh θ

− χ2 − |A|2

2λ
+

�
2i
Tr

�
ln[G−1[χ] ]

�
. (7)

Translating (7) to the imaginary time formalism, we find

�
2i
Tr ln[G−1[χ] ] =

�
d3k

(2π)3

� ωk

2
+

1

β
ln[ 1− e−βωk ]

�
,

where ω2
k = (�k + χ cosh θ− µ)2 − |A|2 sinh2 θ and �k = k2/(2m). At the minimum, we have

δVeff[Φ]

δφ∗

���
φ0

= (χ cosh θ − µ)φ0 − A sinh θ φ∗
0 = 0 . (8)

Using the U(1) gauge symmetry, we choose φ0 to be real. Then, A is real and the dispersion,

ω2
k = �k(�k+2A sinh θ), represents the Goldstone theorem. Next, we set sinh θ = 1, such that
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ωk reduces to the Bogoliubov dispersion, ωk =
�

�k(�k + 2λφ2
0), in the limit of vanishing

quantum fluctuations in the anomalous density. We note that the leading-order (LO) in the

large-N expansion corresponds to θ = 0. This leads to the noninteracting (NI) dispersion,

ωk = �k, and we conclude that the large-N expansion is not a suitable starting point, because

it is incompatible with the Bogoliubov spectrum.

Using standard regularization techniques[22], the renormalized effective potential is writ-

ten as

Veff[Φ] = χ�|φ|2 − 1

2

�
A∗φ2 + Aφ∗ 2�− (χ� + µ)2

4λ
+

|A|2

2λ

+

�
d3k

(2π)3

�1
2

�
ωk − �k − χ� +

|A|2

2�k

�
+

1

β
ln(1− e−βωk)

�
,

where χ� =
√
2χ − µ and ω2

k = (�k + χ� + |A|)(�k + χ� − |A|). The gap equations, obtained

from δVeff[Φ]/δχi = 0, are

A

λ
= φ2 + A

�
d3k

(2π)3

�1 + 2n(ωk)

2ωk
− 1

2�k

�
, (9)

χ� + µ

2λ
= |φ|2 +

�
d3k

(2π)3

��k + χ�

2ωk
[1 + 2n(ωk)]−

1

2

�
,

where n(ωk) = [exp(ωk/kBT )− 1]−1 is the Bose-Einstein particle distribution. At the min-

imum of the effective potential we have, (χ�
0 − A0)φ0 = 0, see Eq. (8), and we replace µ

by the physical density using ρ = −∂Veff[Φ0]/∂µ = (χ�
0 + µ)/(2λ). The density is used to

rescale Eqs. (9), and the ensuing phase diagram problem depends only on the dimensionless

parameter, ρ1/3a0, and the coupling constant becomes λ = 8π ρ1/3a0. In the broken symme-

try phase, we have χ�
0 = A0 and the dispersion relation, ω2

k = �k(�k + 2χ�
0). The condensate

density is denoted by ρ0 = φ2
0. At weak coupling and T = 0, our results coincide with the

Bogoliubov (one-loop) approximation[14], µ = 8πρa0
�
1 + (32/3)

�
ρa30/π

�
.

We compare the LOAF results with the predictions of the Popov bosonic approximation

(PA)[23]. PA is generally recognized as an accurate theoretical description of experimen-

tal data in weakly-coupled dilute trapped Bose gases[24], as long as the densities of the

condensed and noncondensed atoms are comparable with each other. Unfortunately, PA

produces an artificial first-order phase transition at Tc. Formally, PA is obtained from

Eq. (9) by setting A0 = χ�
0 = λρ0 and neglecting the quantum fluctuations in the anomalous

density. With this substitution, the PA dispersion relation reads ω2
k = �k(�k + 2λρ0).

In Fig. 1 we depict the temperature dependence of the normal density χ�, and anomalous

density, A, at constant ρ1/3a0, as derived using the LOAF and PA approximations. For
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FIG. 1. (Color online) Normal density, χ�, and anomalous density, A, from the LOAF and

PA approximations, for ρ1/3a0 = 1. Tc and T � indicate vanishing condensate density, ρ0, and

anomalous density, A, respectively. PA leads to a first-order phase transition, whereas LOAF

predicts a second-order phase transition. We have that Tc = T � in the PA, but not in LOAF. In

LOAF χ� and A are equal until Tc.

illustrative purposes, we set ρ1/3a0 = 1 and the temperature is scaled by its NI critical

value, T0 = (2π�2/m)[ρ/ζ(3/2)]2/3, where ζ(x) is the Riemann zeta function. We identify

two special temperatures, at Tc where the condensate density vanishes, and at T � where the

anomalous density, A, vanishes. These temperatures are the same in the PA formalism, but

they are different in LOAF. The existence of a temperature range, Tc < T < T �, for which

the anomalous density, A, is nonzero despite a zero condensate fraction, φ, is a fundamental

prediction of LOAF. In this temperature range, the dispersion relation is expected to depart

from the quadratic form predicted by the Popov approximation for T > Tc. Above Tc the

solution of the PA equations becomes multivalued, indicating that the system undergoes a

first-order phase transition at Tc. In contrast, LOAF predicts a second-order transition.

The temperature dependence of the condensate fraction, ρ0/ρ, is depicted in Fig. 2 for
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FIG. 2. (Color online) Temperature dependence of the condensate fractions from LOAF and PA,

compared with the NI result, for ρ1/3a0 = 0.1 and ρ1/3a0 = 1. Because at Tc the PA and NI

dispersion relations are the same, PA does not change Tc relative to the NI case. LOAF increases

Tc.

two constant values of the dimensionless parameter ρ1/3a0, together with the NI result,

ρ0/ρ = 1− (T/T0)3/2. Again, we observe that LOAF exhibits the correct second-order BEC

phase transition behavior. Moreover, PA does not change Tc relative to the NI case, because

in the PA case we have Tc = T � and the PA and NI dispersion relations are the same at Tc.

The LOAF approximation predicts an increase of Tc compared with the NI case.

As illustrated in Fig. 2, the LOAF and PA predictions may differ greatly even for tem-

peratures, T � Tc. These differences are enhanced by a strengthening of the interaction

between particles in the Bose gas (a larger value of ρ1/3a0 indicates stronger coupling). The

leading-order AF formalism produces a more realistic set of observables away from the weak-

coupling limit because of its non-perturbative character. In contrast, PA is appropriate only

in the case of a weakly-interacting gas of bosons. The former is made explicit by studying the

LOAF prediction for the relative change in Tc with respect to T0, as a function of ρ1/3a0. The

inset in Fig. 3 demonstrates that in the weak-coupling regime, ρ1/3a0 � 1, LOAF produces
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FIG. 3. (Color online) Relative change in Tc with respect to NI, as predicted by LOAF as a

function of ρ1/3a0. The inset shows that in the weak-coupling regime, LOAF produces the same

slope as the next-to-leading order large-N expansion[17].

the same slope of the linear departure derived by Baym et al.[17] using the large-N expan-

sion, but at next-to-leading order. The LOAF corrections to the critical temperature are due

to the inclusion of self-consistent fluctuations effects in the mean-field χ� and A densities.

A summary of ∆Tc/T0 theoretical predictions is found in Ref.14. For ρ1/3a0 � 1, LOAF

predicts that ∆Tc/T0 → 0.396 when the system approaches the unitarity limit. Despite that

most current experiments probe only the ρ1/3a0 � 1 regime, future experiments[11] may ac-

cess the medium-to-strongly interacting regime, and verify this non-perturbative prediction.

One can systematically improve upon the LOAF approximation by calculating the 1-PI

action order-by-order in �. The broken U(1) symmetry Ward identities guarantee Gold-

stone’s theorem order by order in � [20]. For time-dependent problems, however, this ex-

pansion is secular[25], and a further resummation is required. The latter is performed using

the two-particle irreducible (2-PI) formalism[26]. A practical implementation of this ap-

proach is the bare-vertex approximation (BVA)[27]. The BVA is an energy-momentum and
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particle-number conserving truncation of the Schwinger-Dyson infinite hierarchy of equations

obtained by ignoring the derivatives of the self-energy, similarly to the Migdal’s theorem[28]

approach in condensed matter physics. The BVA proved effective in the case of classical

and quantum λφ4 field theory problems[29] and can be applied to the BEC case.

To summarize, in this paper we introduce a new non-perturbative resummation formula-

tion for the BEC problem. At mean-field level, this approach meets three important criteria

for a satisfactory mean-field theory for weakly-interacting bosons[14]: i) the excitation spec-

trum is gapless (to preserve Goldstone’s theorem), ii) LOAF reduces to the known results

from Bogoliubov theory at T = 0 and weak coupling, and iii) predicts a second-order BEC

phase transition. The latter suggests that a AF formulation of the Lagrangian for systems

of cold fermionic atoms may also impact the study of the BEC to BCS crossover in dilute

fermionic atom systems[30].

Work performed in part under the auspices of the U.S. Department of Energy. The

authors would like to thank E. Mottola and P.B. Littlewood for useful discussions.

[1] O. H. Kamerling, Proc. Roy. Acad. Amsterdam, 13, 1903 (1911).

[2] P. L. Kapitza, Nature, 141, 74 (1938); J. F. Allen and A. D. Misener, ibid., 141, 75 (1938).

[3] F. London, Nature, 141, 643 (1938); Phys. Rev., 54, 947 (1938).

[4] N. N. Bogoliubov, J. Phys. USSR, 11, 23 (1947).

[5] L. D. Landau, J. Phys. USSR, 5, 71 (1941).

[6] T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev., 106, 1135 (1957).

[7] Y. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle, Phys. Rev. Lett., 99, 090403 (2007).

[8] P. O. Fedichev, M. W. Reynolds, and G. V. Shlyapnikov, Phys. Rev. Lett., 77, 2921 (1996);

B. D. Esry, C. H. Greene, and J. P. Burke, 83, 1751 (1999).

[9] T. L. Ho, Phys. Rev. Lett., 92, 090402 (2004); D. Blume, J. von Stecher, and C. H. Greene,

99, 233201 (2007).

[10] A. J. Daley, J. M. Taylor, S. Diehl, M. Baranov, and P. Zoller, Phys. Rev. Lett., 102, 040402

(2009).

[11] K. Henderson, H. Kelkar, T. C. Lee, B. Gutirez-Medina, and M. G. Raizen, Europhys. Lett.,

75, 392 (2006); K. Henderson, C. Ryu, C. MacCormic, and M. Boshier, New J. Phys., 11,

10



043030 (2009).

[12] P. C. Hohenberg and P. C. Martin, Ann. Phys., 34, 291 (1965).

[13] A. Griffin, Phys. Rev. B, 53, 9341 (1996).

[14] J. O. Andersen, Revs. Mod. Phys., 76, 599 (2004).

[15] Collective modes have been measured in BECs, see J. M. Vogels, K. Xu, C. Raman, J. R. Abo-

Shaeer, and W. Ketterle, Phys. Rev. Lett., 88, 060402 (2002), using a method that provides

an experimental verification of the fact that the q-momentum quasi-particle is a superposition

of q and −q waves. This mixing involves the anomalous density, so that the presence of an

anomalous density above the BEC Tc, as predicted by our theory, may be tested not only by

measuring the frequency dispersion, but also by testing the mixing.

[16] In the Thomas-Fermi approximation, the local BEC density, ρ(x), in a trapping potential,

VT (x), follows from the density-dependent chemical potential, µ(ρ) = µ − VT (x). Taking

the gradient of both sides, we find that the local trap force experienced by the bosons

FT (x) = −∇VT (x) and the boson density gradient, ∇ρ(x), are proportional with a constant of

proportionality equal to ∂µ/∂ρ, related to the compressibility, ∇ρ(x)/FT (x) = δµ/δρ. With

the sensitive density profile measurement developed for fermion thermometry, experimentalists

could, in principle, verify the compressibility calculation.

[17] G. Baym, J.-P. Blaizot, and J. Zinn-Justin, Europhys. Lett., 49, 150 (2000).

[18] S. Floerchinger and C. Wetterich, Phys. Rev. A, 77, 053603 (2008).

[19] J. Hubbard, Phys. Rev. Lett., 3, 77 (1959); R. L. Stratonovich, Doklady, 2, 416 (1958).

[20] C. Bender, F. Cooper, and G. Guralnik, Ann. Phys., 109, 165 (1977).

[21] S. Coleman, R. Jackiw, and H. D. Politzer, Phys. Rev. D, 10, 2491 (1974); R. Root, 10, 3322

(1974).

[22] T. Papenbrock and G. F. Bertsch, Phys. Rev. C, 59, 2052 (1999).

[23] V. N. Popov, Functional integrals and collective excitations (Cambridge University Press,

Cambridge, England, 1987).

[24] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys., 71, 463 (1999).

[25] B. Mihaila, J. F. Dawson, and F. Cooper, Phys. Rev. D, 63, 096003 (2001).

[26] G. Baym, Phys. Rev., 127, 1391 (1962); J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys.

Rev. D, 10, 2428 (1974).

[27] K. B. Blagoev, F. Cooper, J. F. Dawson, and B. Mihaila, Phys. Rev. D, 64, 125003 (2001).

11



[28] A. B. Migdal, Sov. Phys. JETP, 7, 996 (1958).

[29] F. Cooper, J. F. Dawson, and B. Mihaila, Phys. Rev. D, 67, 051901R (2003); 67, 056003

(2003); B. Mihaila, 68, 036002 (2003).

[30] K. Levin, Q. J. Chen, C. C. Chien, and Y. He, Ann. Phys., 325, 233 (2010).

12


