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The behavior of a quantum system depends on how it is measured. How much of what is observed
comes from the structure of the quantum system itself and how much from the observer’s choice of
measurement? We explore these questions by analyzing the language diversity of quantum finite-
state generators. One result is a new way to distinguish quantum devices from their classical
(stochastic) counterparts. While the diversity of languages generated by these two computational
classes is the same in the case of periodic processes, quantum systems generally generate a wider
range of languages than classical systems.
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I. INTRODUCTION

Quantum computation has advanced dramatically
from Feynman’s initial theoretical proposal [1] to the
experimental realizations one finds today. The largest
quantum device that has been implemented, though, is a
7 qubit register that can factor a 3 bit number [2] using
Shor’s algorithm [3]. A review of this and other currently
feasible quantum devices reveals that, for now and the
foreseeable future, they will remain small—in the sense
that a very limited number of qubits can be stored. Far
from implementing the theoretical ideal of a quantum
Turing machine, current experiments test quantum com-
putation at the level of small finite-state machines.

The diversity of quantum computing devices that lie
between the extremes of finite-state and (unbounded
memory) Turing machines is substantially less well un-
derstood than, say, that for classical automata, as cod-
ified in the Chomsky hierarchy [4]. As an approach to
filling in a quantum hierarchy, comparisons between clas-
sical and quantum automata can be quite instructive.

Such results are found for automata at the level of
finite-state machines [5–7]. For example, the regular lan-
guages are recognized by finite-state machines (by defi-
nition), but quantum finite-state machines, as defined in
Ref. [6], cannot recognize all regular languages. This
does not mean, however, that quantum automata are
strictly less powerful than their classical counterparts.
There are nonregular languages that are recognized by
quantum finite-state machines [8]. These first results
serve to illustrate the need for more work, if we are to
fully appreciate the properties of quantum devices even
at the lowest level of some presumed future quantum
computational hierarchy.

The comparison of quantum and classical automata
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†Electronic address: chaos@cse.ucdavis.edu

has recently been extended to the probabilistic languages
recognized by stochastic and quantum finite-state ma-
chines [7]. There, quantum finite-state generators were
introduced as models of the behaviors produced by quan-
tum systems and as tools with which to quantify their
information storage and processing capacities.

Here we continue the effort to quantify information
processing in simple quantum automata. We will show
how a quantum system’s possible behaviors can be char-
acterized by the diversity of languages it generates under
different measurement protocols. We also show how this
can be adapted to measurements, suitably defined, for
classical automata. It turns out that the diversity of lan-
guages, under varying measurement protocols, provides a
useful way to explore how classical and quantum devices
differ. A measured quantum system and its associated
measured classical system can generate rather different
sets of stochastic languages. For periodic processes, the
language diversities are the same between the quantum
and counterpart classical systems. However, for aperi-
odic processes quantum systems are more diverse, in this
sense, and potentially more capable.

In the following, we first review formal language
and automata theory, including stochastic languages,
stochastic and quantum finite-state generators, and the
connection between languages and behavior. We then in-
troduce the language diversity of a finite-state automaton
and analyze a number of example processes, comparing
quantum and classical models. We conclude with a few
summary remarks and contrast the language diversity
with transient information, which measures the amount
of information an observer needs to extract in order to
predict which internal state a process is in [9].

II. FORMAL LANGUAGES AND BEHAVIOR

Our use of formal language theory differs from most in
how it analyzes the connection between a language and
the systems that can generate it. In brief, we observe a
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system through a finite-resolution measuring instrument,
representing each measurement with a symbol σ from dis-
crete alphabet Σ. The temporal behavior of a system,
then, is a string or a word consisting of a succession of
measurement symbols. The collection of all (and only)
those words is the language that captures the possible,
temporal behaviors of the system.

Definition. A formal language L is a set of words w =
σ0σ1σ2 . . . each of which consists of a series of symbols
σi ∈ Σ from a discrete alphabet Σ.

Σ∗ denotes the set of all possible words of any length
formed using symbols in Σ. We denote a word of length
L by σL = σ0σ1 . . . σL−1, with σi ∈ Σ. The set of all
words of length L is ΣL.

Since a formal language, as we use the term, is a set
of observed words generated by a process, then each sub-
word σiσi+1 . . . σj−1σj , i ≤ j, i, j = 0, 1, . . . , L − 1 of a
word σL has also been observed and is considered part
of the language. This leads to the following definition.

Definition. A language L is subword closed if, for each
w ∈ L, all of w’s subwords sub(w) are also members of
L: sub(w) ⊆ L.

Beyond a formal language listing which words (or be-
haviors) occur and which do not, we are also interested
in the probability of their occurrence. Let Pr(w) denote
the probability of word w, then we have the following
definition.

Definition. A stochastic language L is a formal lan-
guage with a word distribution Pr(w) that is normalized
at each length L:

∑

{σL∈L}
Pr(σL) = 1 , (1)

with 0 ≤ Pr(σL) ≤ 1.

Definition. Two stochastic languages L1 and L2 are
said to be δ-similar if ∀σL ∈ L1 and σ′L ∈ L2 : |Pr(σL)−
Pr(σ′L)| ≤ δ, for all L and a specified 0 ≤ δ ≤ 1. If this
is true for δ = 0, then the languages are equivalent.

For purposes of comparison between various computa-
tional models, it is helpful to refer directly to the set of
words in a stochastic language L. This is the support of
a stochastic language:

supp(L) = {w ∈ L : Pr(w) > 0} . (2)

The support itself is a formal language. Whenever we
compare formal and stochastic languages we add the re-
spective subscripts and write Lformal and Lstoch.

III. STOCHASTIC FINITE-STATE

GENERATORS

Automata with finite memory—finite-state ma-
chines—consist of a finite set of states and transitions

between them [4]. Typically, they are used as recognition
devices, whereas we are interested in the generation of
words in a stochastic language. So here we will review
models for classical and quantum generation, referring
the reader to Ref. [10] for details on recognizers and
automata in general.

Definition. [7] A stochastic generator G is a tuple
{S, Y, {T (y)}} where

1. S is a finite set of states, with |S| denoting its car-
dinality.

2. Y is a finite alphabet for output symbols.

3. {T (y), y ∈ Y } is a set of |Y | square stochastic ma-
trices of order |S|. |Y | is the cardinality of Y , the
components Tij(y) give the probability of moving to
state sj and emitting y when in state si.

4. At each step a symbol y ∈ Y is emitted and the ma-
chine updates its state. Thus,

∑

y∈Y

∑

j Tij(y) =
1.

Definition. A deterministic generator (DG) is a G in
which each matrix T (y) has at most one nonzero entry
per row.

A. Process languages

Definition. A process language P is a stochastic lan-
guage that is subword closed.

The output of a stochastic generator (as well as the
quantum generator introduced below) is a process lan-
guage; for the proof see Ref. [7]. Thus, all stochastic lan-
guages discussed in the following are process languages.

Definition. A periodic process language with period N
is a process language such that ∀w = σ0σ1 . . . σn ∈ P
with n ≥ N : σi = σi+N .

Before discussing the languages associated with a G,
we must introduce some helpful notation.

Notation. Let |η〉 = (11 . . . 11)T denote a column vector
with |S| components that are all 1s.

Notation. The state vector 〈π| = (π0, π1, . . . , π|S|−1) is
a row vector whose components, 0 ≤ πi ≤ 1, give the
probability of being in state si. The state vector is nor-

malized in probability:
∑|S|−1

i=0 πi = 1. The initial state
distribution is denoted 〈π0|.

The state-to-state transition probabilities of a G, inde-
pendent of outputs, are given by the state-to-state tran-
sition matrix :

T =
∑

y∈Y

T (y) , (3)
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which is a stochastic matrix: i.e., 0 ≤ Tij ≤ 1 and
∑

j Tij = 1.
The generator updates its state distribution after each

time step as follows:

〈πt+1| = 〈πt|T (y) , (4)

where (re)normalization of the state vector is assumed.
If a G starts in state distribution 〈π0|, the probabil-

ity of generating yL is given by the state vector without
renormalization

Pr(yL) = 〈π0|T (yL)|η〉 , (5)

where T (yL) =
∏L−1

i=0 T (yi) represents the assumption in
our model that all states are accepting. This, in turn, is a
consequence of our focusing on process languages, which
are subword closed.

IV. QUANTUM GENERATORS

Quantum generators are a subset of quantum machines
(or transducers), as defined in Ref. [7]. Their architec-
ture consists of a set of internal states and transitions and
an output alphabet that labels transitions. For simplic-
ity here we focus on the definition of generators, without
repeating the general definition of quantum transducers.
Our basic quantum generator (QG) is defined as follows.

Definition. [7] A QG is a tuple {Q,H, Y,T(Y )}} where

1. Q = {qi : i = 0, . . . , n − 1} is a set of n = |Q|
internal states.

2. The state space H is an n-dimensional Hilbert
space.

3. The state vector is 〈ψ| ∈ H.

4. Y is a finite alphabet for output symbols. λ /∈ Y
denotes the null symbol.

5. T(Y ) is a set of n-dimensional transition matrices
{T (y) = P (y) · U, y ∈ Y } that are products of a
unitary matrix U and a projection operator P (y)
where

(a) U is an n-dimensional unitary evolution op-
erator that governs the evolution of the state
vector.

(b) P(Y ) is a set of n-dimensional projection
operators—P = {P (y) : y ∈ Y ∪ {λ}}—that
determines how a state vector is measured.The
P (y) are Hermitian matrices.

At each time step a QG outputs a symbol y ∈ Y or the
null symbol λ and updates its state vector.

The output symbol y is identified with the measure-
ment outcome. The symbol λ represents the event of
no measurement. In the following we will concentrate
on deterministic quantum generators. They are more
transparent than general (nondeterministic) QGs, but
still serve to illustrate the relative power of quantum and
classical generators.

Definition. A quantum deterministic generator (QDG)
is a QG in which each matrix T (y) has at most one
nonzero entry per row.

A. Observation and Operation

The projection operators determine how output sym-
bols are generated from the internal, hidden dynamics.
In fact, the only way to observe a quantum process is
to apply a projection operator to the current state. In
contrast with classical processes, the measurement event
disturbs the internal dynamics. The projection operators
are familiar from quantum mechanics and can be defined
in terms of the internal states as follows.

Definition. A projection operator P (y) is the linear op-
erator

P (y) =
∑

κ∈Hy

|φκ〉〈φκ| , (6)

where κ runs over the indices of a one- or higher-
dimensional subspace Hy of the Hilbert space and the φκ

span these subspaces.

We can now describe a QG’s operation. Uij is the
transition amplitude from state qi to state qj . Starting
in state 〈ψ0| the generator updates its state by applying
the unitary matrix U . Then the state vector is projected
using P (y) and renormalized. Finally, symbol y ∈ Y is
emitted. In other words, a single time-step of a QG is
given by:

〈ψ(y)| = 〈ψ0|UP (y) , (7)

where (re)normalization of the state vector is assumed.
The state vector after L time steps when emitting string
yL is

〈ψ(yL)| = 〈ψ0|
L−1
∏

i=0

(UP (yi)) . (8)

We can now calculate symbol and word probabilities
of the process language generated by a QG. Starting the
QG in 〈ψ0| the probability of output symbol y is given
by the state vector without renormalization:

Pr(y) = ‖ψ(y)‖2
. (9)

By extension, the probability of output string yL is

Pr(yL) =
∥

∥ψ(yL)
∥

∥

2
. (10)
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B. Properties

In Ref. [7] we established a number of properties of
QGs: their consistency with quantum mechanics, that
they generate process languages, and their relation to
stochastic generators and to quantum and stochastic rec-
ognizers. Here we avail ourselves of one property in par-
ticular of QDGs—for a given QDG there is always an
equivalent (classical) deterministic generator. The latter
is obtained by squaring the matrix elements of theQDG’s
unitary matrix and using the same projection operators.
The resulting state-to-state transition matrix is doubly
stochastic; i.e., 0 ≤ Tij ≤ 1 and

∑

i Tij =
∑

j Tij = 1.

Theorem 1. Every process language generated by a
QDG is generated by some DG.

Proof. See Ref. [7].

This suggests that the process languages generated by
QDGs are a subset of those generated by DGs. In the
following, we will take a slightly different perspective and
ask what set of languages a given QDG can generate as
one varies the measurement protocol—that is, the choice
of measurements.

V. LANGUAGE DIVERSITY

The notion of a measurement protocol is familiar from
quantum mechanics: We define the measurement period
as the number of applications of a projection operator
relative to the unitary evolution time step. For a classical
system this is less familiar, but it will be used in the
same way. The measurement period here is the period of
observing an output symbol relative to the internal state
transitions. The internal dynamics remain unaltered in
the classical case, whether the system is measured or not.
In the quantum case, as is well known, the situation is
quite different. Applying a projection operator disturbs
the internal dynamics.

Definition. A process observed with measurement pe-
riod p is measured every p time steps.

Note that this model of a measurement protocol, by
which we subsample the output time series, is related to
von Mises version of probability theory based on “collec-
tives” [11].

The resulting observed behavior can be described in
terms of the state-to-state transition matrix and the pro-
jection operators. For a classical finite-state machine this
is:

〈π(y)t+p| = 〈πt|T p−1T (y) , (11)

where 〈π(y)t+p| is the state distribution vector after p
time steps and after observing symbol y. Note that
T (y) = TP (y).

For a quantum finite-state machine we have, instead:

〈ψ(y)t+p| = 〈ψt|UpP (y) . (12)

In both cases we dropped the renormalization factor.
The stochastic language generated by a particular

quantum finite-state generator G for a particular mea-
surement period p is labeled Lp(G). Consider now the
set of languages generated by G for varying measurement
period {Lp(G)}.

Definition. The language diversity of a (quantum or
classical) finite-state machine G is the logarithm of the
total number |{Lp(G)}| of stochastic languages that G
generates as a function of measurement period p:

D(G) = log2 |{Lp(G)}| . (13)

Whenever we are interested in comparing the diversity
in terms of formal and stochastic languages we add the re-
spective subscript and write Dformal(G) and Dstoch(G),
respectively. Here, Dformal = log2|Lp

formal|. In general,

Dstoch(G) > Dformal(G) for any particular G.
In the following we will demonstrate several properties

related to the language diversity of classical and quantum
finite-state machines.

Since every L(QDG) is generated by some DG, at first
blush one might conclude that DGs are at least as pow-
erful as QDGs. However, as pointed out in Ref. [7], this
is true only for one particular measurement period. In
the following examples we will study the dependence of
the generated languages on the measurement period. It
will become clear that Theorem 1 does not capture all
of the properties of a QDG and its classical analog DG.
For all but the periodic processes of the following exam-
ples the language diversity is larger for the QDG than
its DG analog, even though the projection operators are
identical.

These observations suggest the following.

Conjecture. D(QDG) ≥ D(DG).

The inequality becomes an equality in one case.

Proposition 1. For a QDG G generating a periodic
stochastic language L and its analog DG G′

D(G) = D(G′) . (14)

Proof. For any measurement period p and word length
L words yL ∈ L(G) and y′L ∈ L(G′) with yL = y′L have
the same probability: Pr(yL) = Pr(y′L). That is,

Pr(yL) = ‖ψ0UpP (y0)U
pP (y1) . . . U

pP (yL−1)‖2

and

Pr(y′L) = 〈π0|T pP (y0)T
pP (y1) . . . T

pP (yL−1)|η〉 .

Due to determinism and periodicity Pr(yL) = 0 or 1,
and also Pr(y′L) = 0 or 1 for all possible ψ0 and π0,
respectively. Since U = T , the probabilities are equal. �
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We can give an upper bound for D in this case.

Proposition 2. For a QG G generating a periodic pro-
cess language L with period N :

D(G) ≤ log2(|Y | +N(N − 1)) . (15)

Proof. Since L(G) is periodic, Lp(G) = Lp+N (G). For
p = N, 2N, . . . : Lp(G) = {y∗}, y ∈ Y . For p = N +
i, 2N + i, . . . , 0 < i < N : Lp(G) = sub((σ0σ1 . . . σN−1)

∗)
and all its cyclic permutations are generated, in total N
for each p. This establishes an upper bound of |Y | +
N(N − 1).

For general quantum processes there exists an upper
bound for the language diversity.

Proposition 3. For a QGD G

D(G) ≤ log2(|Y | + k(k − 1)) , (16)

where k is the integer giving

Uk = I + ιJ , (17)

I is the identity matrix, ι≪ 1, and J is a diagonal matrix
∑

i |Jii|2 ≤ 1.

Proof. It was shown in Ref. [6] (Thms. 6 and 7), that
any n × n unitary U can be considered as rotating an
n−dimensional torus. Then for some k Uk is within a
small distance of the identity matrix. Thus, k can be
considered the pseudo-period of the process, compared to
a strictly periodic process with period N and UN = I.

Thus, Lp(G) and Lp+k(G) are δ-similar with δ ≪ 1.
For p = k : Up = I + ιJ , generating L = {y∗}. Using
the same argument as in the proof of Prop. 2 to lower the
bound by k this establishes the upper bound for D(G).�

It should be noted that the upper bound on D depends
on the parameter δ defining the similarity of languages
Lp(G) and Lp+k(G). In general, the smaller δ is, the
larger is k.

Proposition 4. For a QDG G generating a peri-
odic process language the number of formal languages
|Lformal(G)| equals the number of stochastic languages
|Lstoch(G)|

Dformal(G) = Dstoch(G). (18)

Proof. It is easily seen that any QG generating a peri-
odic process is deterministic: its unitary matrix has only
0 and 1 entries. It follows that word probabilities are ei-
ther 0 or 1 and so there is a one-to-one mapping between
the stochastic language generated and the corresponding
formal language.�

Corollary 1. For a QDG G generating a periodic pro-
cess and its analog DG G′:

Dformal(G) = Dformal(G
′) = Dstoch(G) = Dstoch(G′) .

(19)

Proof. The Corollary follows from Prop. 1 and a
straightforward extension of Proposition 4 to classical pe-
riodic processes.�

VI. EXAMPLES

The first two examples, the iterated beam splitter and
the quantum kicked top, are quantum dynamical sys-
tems that are observed using complete measurements.
In quantum mechanics, a complete measurement is de-
fined as a nondegenerate measurement operator, i.e., one
with nondegenerate eigenvalues. The third example, the
distinct period-5 processes, illustrates processes observed
via incomplete measurements. Deterministic quantum
and stochastic finite-state generators are constructed and
compared for each example.

A. Iterated beam splitter

The iterated beam splitter is a simple quantum pro-
cess, consisting of a photon that repeatedly passes
through a loop of beam splitters and detectors, with one
detector between each pair of beam splitters [7]. Thus,
as the photon traverses between one beam splitter and
the next, its location in the upper or lower path between
them is measured nondestructively by the detectors. The
resulting output sequence consists of symbols 0 (upper
path) and 1 (lower path).

The operators have the following matrix representation
in the experiment’s eigenbasis:

U =
1√
2

(

1 1
1 −1

)

, (20)

P (0) =

(

1 0
0 0

)

, (21)

P (1) =

(

0 0
0 1

)

. (22)

Observing with different measurement periods, the
generated language varies substantially. As can be eas-
ily seen with Eqs. (10) and (12), three (and only three)
languages are generated as one varies p. They are sum-
marized in Table I for all yL ∈ L and for n = 0, 1, 2 . . . ,
which is used to parametrize the measurement period.
The language diversity of the QDG is then D = log2(3).
We can compare this to the upper bound given in Prop. 3.
In the case of the unitary matrix U given above k = 2,
since UU = I. U is also known as the Hadamard matrix.
Thus, the upper bound for the language diversity in this
case is D ≤ log2(4).

The classical equivalent DG for the iterated beam
splitter, constructed as described in Ref. [7], is given
by the following state-to-state transition matrix:

T =

(

1
2

1
2

1
2

1
2

)

.

Using Eqs. (5) and (11), we see that only one language is
generated for all p. This is the language of the fair coin
process, a random sequence of 0s and 1s, see Table I.
Thus, D(DG) = 0.
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Iterated Beam Splitter Language Diversity
Machine p supp(L) L D

Type

QDG 2n (0 + 1)∗ Pr(yL) = 2−L

2n + 1 0∗ Pr(yL) = 1
2n + 1 1∗ Pr(yL) = 1 1.58

DG n (0 + 1)∗ Pr(yL) = 2−L 0

TABLE I: Process languages generated by the QDG for the
iterated beam splitter and by the classical DG. The mea-
surement period takes a parameter n = 0, 1, 2 . . . . The word
probability is given for all yL ∈ L.

B. Quantum kicked top

The periodically kicked top is a familiar example of a
finite-dimensional quantum system whose classical limit
exhibits various degrees of chaotic behavior as a function
of its control parameters [12]. For a spin-1/2 system the
unitary matrix is:

U =

(

1√
2

− 1√
2

1√
2

1√
2

)

·
(

e−ik 0
0 e−ik

)

and the projection operators are:

P (0) =

(

1 0
0 0

)

,

P (1) =

(

0 0
0 1

)

.

Since this QDG G is deterministic, its classical DG G′

exists and is given by:

T =

(

1
2

1
2

1
2

1
2

)

.

The process languages generated by this QDG and its
analog DG are given in Table II. The language diversity
is D(G) = log2(5). Whereas the language diversity of
classical counterpart DG is D(G′) = 0, since it generates
only the language of the fair coin process.

C. Period-5 process

As examples of periodic behavior and, in particular, of
incomplete measurements, consider the binary period-5
processes distinct up to permutations and (0 ↔ 1) ex-
change. There are only three such processes: (11000)∗,
(10101)∗, and (10000)∗ [13]. They all have the same
state-to-state transition matrix—a period-5 permuta-
tion. This irreducible, doubly stochastic matrix is re-
sponsible for the fact that the QDG of a periodic pro-
cess and its classical DG have the same properties. Their

Spin-1/2 Quantum Kicked Top Language Diversity
Machine p supp(L) L D

Type

QDG 4n + 1, 4n + 3 (0 + 1)∗ Pr(yL) = 2−L

4n + 2 sub((01)∗) Pr(((01)∗)L) = 1/2
Pr(((10)∗)L) = 1/2

4n + 2 sub((10)∗) Pr(((10)∗)L) = 1/2
Pr(((01)∗)L) = 1/2

4n 0∗ Pr(yL) = 1
4n 1∗ Pr(yL) = 1 2.32

DG n (0 + 1)∗ Pr(yL) = 2−L 0

TABLE II: Process languages generated by the QDG for the
spin-1/2 quantum kicked top and its corresponding classical
DG. The measurement period, again, is parametrized by n =
0, 1, 2 . . . . The word probability is given for all yL ∈ L.

state-to-state unitary transition matrix is given by

T = U =











0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0











. (23)

The projection operators differ between the processes
with different template words, of course. For template
word 10000, they are:

P (0) =











1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1











, (24)

P (1) =











0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0











. (25)

For 11000, they are:

P (0) =











1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1











, (26)

P (1) =











0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0











. (27)
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Distinct Period-5 Processes’ Language Diversity
Machine p supp(L) L, L > 5 D

Type

10000 5n + 1, 5n + 2 sub((10000)∗) Pr(yL) = 1/5
5n + 3, 5n + 4

5n 0∗ Pr(yL) = 1
5n 1∗ Pr(yL) = 1 1.58

11000 5n + 1, 5n + 4 sub((11000)∗) Pr(yL) = 1/5
5n + 2, 5n + 3 sub((01010)∗) Pr(yL) = 1/5

5n 0∗ Pr(yL) = 1
5n 1∗ Pr(yL) = 1 2

10101 5n + 1, 5n + 4 sub((10101)∗) Pr(yL) = 1/5
5n + 2, 5n + 3 sub((00111)∗) Pr(yL) = 1/5

5n 0∗ Pr(yL) = 1
5n 1∗ Pr(yL) = 1 2

TABLE III: Process languages produced by the three dis-
tinct period-5 generators. The quantum and classical ver-
sions are identical in each case. The measurement period is
parametrized by n = 0, 1, 2 . . . . For simplicity, the word prob-
ability is given for all yL ∈ L with L ≥ 5. For the nontrivial
languages above, when L > 5 there are only five words at
each length, each having equal probability.

And for word 10101, they are:

P (0) =











0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1











, (28)

P (1) =











1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0











. (29)

The difference between the measurement alphabet size
and the period of a process, which determines the number
of states of a periodic process, should be noted. In all our
examples the measurement alphabet is binary. Thus, in
having five internal states but only a two-letter measure-
ment alphabet, the period-5 processes necessarily consti-
tute systems observed via incomplete measurements.

The set of languages generated by the three processes
is summarized in Table III. The generated language de-
pends on the initial state only when the measurement
period is a multiple of the process period.

The language diversity for the process 10000 is D =
log2(3) and for both the processes 11000 and 10101,
D = 2. Note that the processes 11000 and 10101 gen-
erate each other at particular measurement periods, if
one exchanges 0s and 1s. It is not surprising therefore
that the two models have the same language diversity.

It turns out that the state of the quantum systems
under periodic dynamics is independent of the measure-
ment protocol. At each point in time the system is in
an eigenstate of the measurement operator. Therefore,
the measurement does not alter the internal state of the

Quantum process Classical process
System Iterated beam splitter Fair coin
D log

2
(3) 0

Measurement Complete Complete
System Quantum kicked top Fair coin
D log2(5) 0
Measurement Complete Complete

System 10000 10000
D log

2
(3) log

2
(3)

Measurement Incomplete Incomplete
System 11000 11000
D 2 2
Measurement Incomplete Incomplete
System 10101 10101
D 2 2
Measurement Incomplete Incomplete

TABLE IV: Comparison between QDGs and their classical
DGs. Note that the term “(in)complete measurement” is not
used for classical systems. However, the above formalism does
render it meaningful. It is used in the same way as in the
quantum case (one-dimensional subspaces or non-degenerate
eigenvalues).

quantum system. Thus, a system in state 〈ψ0| is going
to be in a particular state 〈ψ2| after two time steps, in-
dependent of whether being measured in between. This
is true for quantum and classical periodic systems. The
conclusion is that for periodic processes there is no differ-
ence between unmeasured quantum and classical states.
This is worth noting, since this is the circumstance where
classical and quantum systems are supposed to differ. As
a consequence the language diversity is the same for the
quantum and classical model of all periodic processes,
which coincides with Prop. 1.

Note, however, that the language diversity is not the
same for all processes with the same period. A property
that is reminiscent of the transient information [9, 13],
which also distinguishes between structurally different
periodic processes.

D. Discussion

The examples show that the language diversity mon-
itors aspects of a process’s structure and it is different
for quantum and classical models of aperiodic processes.
This suggests that it will be a useful aid in discovering
structure in the behavior of quantum dynamical systems.
For the aperiodic examples, the QDG had a larger lan-
guage diversity than its classical DG. And this suggests
a kind of computational power of QDGs that is not obvi-
ous from the structural constraints of the machines. Lan-
guage diversity could be compensation, though, for other
limitations of QDGs, such as not being able to generate
all regular languages. The practical consequences of this
for designing quantum devices remains to be explored.

A comparison between QDGs and their classical DGs
gives a first hint at the structure of the lowest levels of
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a potential hierarchy of quantum computational model
classes. It turned out that for periodic processes a QDG
has no advantage over a DG in terms of the diversity
of languages possibly generated by any QDG. However,
for the above examples of both incomplete and complete
measurements, the set of generated stochastic languages
is larger for a QDG than the corresponding DG.

Table IV summarizes the processes discussed above,
their properties and language diversities. All finite-state
machines are deterministic, for which case it was shown
that there exists an equivalent DG that generates the
same language [7]. This is true, though only for one par-
ticular measurement period. Here we expanded on those
results in comparing a range of measurement periods and
the entire set of generated stochastic languages.

For each example quantum generator and the cor-
responding classical generator the language diversity
and the type of measurement (complete/incomplete) are
given. For all examples the language diversity is larger
for the QDG than the DG. It should be noted, however,
that the fair coin process is also generated by a one-state
DG with transition matrices T (0) = T (1) = (1/2). This
it not true for the QDGs. Thus, the higher language
diversity of a QDG is obtained at some cost—a larger
number of states is needed than with a DG generating
any one particular process language. The situation is
different, again, for the period-5 processes—there is no
DG with fewer states that generates the same process
language.

The above examples were simple in the sense that their
language diversity is a finite, small number. In some
broader sense, this means that they are recurrent—to
use terminology from quantum mechanics. For other
processes the situation might not be quite as straight-
forward. To find the language diversity one has to take
the limit of large measurement periods. For implementa-
tions this is a trade-off, since larger measurement period
requires a coherent state for a longer time interval. In
particular it should be noted that in the above exam-
ples shorter intervals between measurements cause more
“interesting” observed behavior. That is, the stochastic
language L2 = {(01)∗, (10)∗} generated by the quantum
kicked top with Pr(yL) = 1/2, consisting of strings with
alternating 0s and 1s is more structured than the lan-
guage L4 = {0∗} with Pr(yL) = 1 consisting of only 0s.
(Cf. Table II.)

VII. CONCLUSION

Quantum finite-state machines occupy the lowest level
of an as-yet only partially known hierarchy of quantum

computation. Nonetheless, they are useful models for
quantum systems that current experiment can imple-
ment, given the present state of the art. We briefly re-
viewed quantum finite-state generators and their classi-
cal counterparts—stochastic finite-state generators. Il-
lustrating our view of computation as an intrinsic prop-
erty of a dynamical system, we showed similarities and
differences between finite-memory classical and quan-
tum processes and, more generally, their computational
model classes. In particular, we introduced the language
diversity—a new property that goes beyond the usual
comparison of classical and quantum machines. It cap-
tures the fact that, when varying measurement protocols,
different languages are generated by quantum systems.
Language diversity appears when quantum interference
operates.

For a set of examples we showed that a determinis-
tic quantum finite-state generator has a larger language
diversity than its classical analog. Since we associate a
language with a particular behavior, we also associate a
set of languages with a set of possible behaviors. As a
consequence, the QDGs all exhibited a larger set of be-
haviors than their classical analogs. That is, they have a
larger capacity to store and process information.

We close by suggesting that the design of finite quan-
tum computational elements could benefit from consider-
ing the measurement process not only as a final but also
as an intermediate step, which may simplify experimental
design.

Since we considered only finite-memory systems here,
their implementation is already feasible with current
technology. Cascading compositions of finite processes
can rapidly lead to quite sophisticated behaviors, as dis-
cussed in Ref. [7]. A discussion of associated information
storage and processing capacity analogous to those used
for classical dynamical systems in Ref. [9] is under way.
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