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Abstract

Suppose a two�dimensional dynamical system has a stable attractor that is

surrounded by an unstable limit cycle� If the system is additively perturbed by

white noise� the rate of escape through the limit cycle will fall o� exponentially

as the noise strength tends to zero� By analysing the associated Fokker�Planck

equation we show that in general� the weak�noise escape rate is non�Arrhenius�

it includes a factor that is periodic in the logarithm of the noise strength� The

presence of this slowly oscillating factor is due to the nonequilibrium potential

of the system being nondi�erentiable at the limit cycle� We point out the

implications for the weak�noise limit of stochastic resonance models�
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A particularly interesting phenomenon is the occurrence of noise�induced transitions
between attractors of a dynamical system� Such transitions occur in chemical physics�
where the transition is a motion across a transition�state surface from a reactant region to
a product region� They also occur in statistical physics� and in other �elds where stochastic
modelling plays a role ����	�

If the noise is white� or has a short correlation time and may be approximated as white�
then the probability density of the system will satisfy a Fokker
Planck equation� This
equation governs the way in which noise�induced transitions occur� By the �rate� at which
a speci�ed transition takes place we shall mean the probability that it occurs� per unit
time� At least in �nite�dimensional systems� any such rate should fall o
 exponentially
as �� the noise strength� tends to zero� �In thermal applications � would be proportional
to kT �� In fact� each transition should be characterized by an activation energy �W � with
the transition rate falling o
 to leading order as e��W��� Computing the pre�exponential
factor requires a careful analysis of the Fokker
Planck equation ��
�	�

Most work has focused on the case when the competing attractors of the dynamical
system are separated by a separatrix �i�e�� a �ridge�� containing a saddle point� However�
models where the separatrix is instead an unstable limit cycle arise in the context of chemical
reactions constrained to occur far from equilibrium ��	� Also� transitions across an unstable
limit cycle separating steady states of periodic vibration occur in models of stochastic res�
onance in bistable continuous systems ����	� A full analysis of noise�driven escape through
an unstable limit cycle accordingly seems called for�

Previous work on noise�driven transitions in models with an unstable limit cycle is found
in Refs� ����
��	� Graham and T�el �����	� and Day ���
��	� have noted that the nonequilib�
rium potential W � as a function on the state space of the system being modelled� will be
nondi
erentiable ��wild�� near the limit cycle if the system fails to satisfy a form of detailed
balance� Naeh et al� ��	 began an analysis of the Fokker
Planck equations associated to such
models� by a method of matched asymptotic expansions� but their analysis assumed that W
was di
erentiable at the limit cycle�

In this Letter we begin an asymptotic analysis of the rate of escape through an unstable
limit cycle that incorporates the insights of Graham and T�el� and of Day� and obtain a
striking result� We show that generically� in two�dimensional models with an unstable limit
cycle enclosing an attractor� the rate of escape R is given by a non�Arrhenius formula of the
form

R � const� �bG �jlog �j� e��W�� ���

in the weak�noise �� � �� limit� Here b is model�dependent� and the factor G �jlog �j� is a
model�dependent periodic function of jlog �j� The presence of such slowly oscillating factors

in the expressions for noise�dependent transition rates has not previously been suspected�
It indicates that even in bistable dynamical systems with e
ective dimensionality as low
as two� relaxation phenomena may be more complicated than is commonly believed� Our
analysis applies whenever the system is truly two�dimensional� i�e�� is nonseparable�

Models��We consider models with dynamics that are those of a Brownian particle mov�
ing in a drift �eld� i�e��

�xi � ui�x� � ����
�X

���

�i
��x����t�� ���
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Here x � �x�� x�� is a pair of state variables� and the drift �eld u � �u�� u�� speci�es
the dynamics in the absence of noise� ���� ��� is a pair of white noise processes� satisfying
h���s����t�i � �����s� t�� � � ��i

�� is a so�called noise matrix that is allowed to be state�
dependent �a �zweibein� �eld�� The probability density � � ��x� t� of such a system satis�es
the Fokker
Planck equation

�� � �L��� � �����	i	j
h
Dij�x��

i
� 	i

h
ui�x��

i
� ���

where the di
usion tensor D � �Dij� � ��t� The operator L�� is the �forward� Fokker

Planck operator� We consider here the case when there is a point attractor S in the �x�� x���
plane� with domain of attraction �� for which the boundary 	� is an unstable limit cycle�

This framework is su�ciently general that it can accomodate two�dimensional models
with overdamped dynamics� or one�dimensional models with underdamped dynamics� In the
latter case one of the state variables �x�� say� would be a position� and the other a velocity�
Our simulations below are of a model of this sort� namely

�x � v ���

�v � �x� �v� � ��v � �������t�� ���

This is a time�reversed van der Pol oscillator� the asymptotic analysis of which was begun by
Day ���	� Here �x�� x�� � �x� v�� S � ��� ��� and D � diag ��� �� is degenerate� The unstable
limit cycle is shown in Fig� ��

The Analysis��To estimate the rate of escape through 	�� we use the Kramers  ux�
over�the�barrier technique ���	� Suppose that escaping Brownian particles are re�injected
at the attractor S� and a steady state has been reached� The probability density in this
state� which we denote ��� will satisfy L���� � �� When the noise strength � is small� �� will
be tightly peaked near S� ���x�� at points x on the limit cycle 	� and outside it� will be
suppressed by a factor � e��W�� relative to ���S�� Since the Fokker
Planck equation has
the form of a continuity equation� with current density J i��	 equalling �ui � �����	j �Dij�	�
the escape rate R may be computed as the  ux of probability through 	�� i�e��

R �
Z
��
J ���	 � n d


�Z
�
�� d

�x� ���

Here n denotes the outward normal on 	��
To derive the oscillating formula of eq� ��� from eq� ���� we introduce a WKB approxi�

mation to the steady�state density �� in the weak�noise limit ��
�	� We write

���x� � K�x� exp ��W �x���� � ���

HereW �x� is an �activation energy� controlling noise�induced  uctuations from the attractor
to the vicinity of x� Though ��� resembles a Maxwell�Boltzmann distribution� W is a
nonequilibrium potential� since the steady state is not necessarily an equilibrium state�
in that it does not necessarily satisfy detailed balance� We set W �S� � �� so that �W � the
fallo
 rate of the escape rate� is the value of W attained on the unstable limit cycle�

Substituting ��� into L���� � � and separating out the O����� terms yields the eikonal
equation
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H�xi� 	W�	xi� � �� ���

where

H�xi� pi� �
�

�
Dij�x�pipj � ui�x�pi ���

is a so�called Wentzell�Freidlin Hamiltonian ���	� Equation ��� has the form of a Hamilton�
Jacobi equation� withW a classical action at zero energy� To computeW �x� one may simply
use Hamilton�s equations of motion to generate the zero�energy classical trajectory from S
to x� The quantityW �x� will necessarily equal

R
p �dx� the line integral being taken from S

to x along the trajectory� We stress that p � rW here is not a physical momentum! it is
a mathematical artifact� Hamilton�s equation �xi � Dijpj � ui reveals that p measures the
extent to which the classical trajectories move against the drift u� Deterministic �no�noise�
trajectories have p � ��

By separating out the O���� terms in L���� � � one can show that the pre�exponential
factor K�x� satis�es ����	

�K � �
�
r � u�DijW�ij��

�
K� ����

the time derivative being a derivative with respect to transit time along the zero�energy clas�
sical trajectory� Here W�ij � 	W�	xi	xj� By di
erentiating the Hamilton�Jacobi equation
one can show that the matrix �W�ij� satis�es a Riccati equation along the trajectory!

�W�ij � �DklW�kiW�lj � uk�iW�kj � uk�jW�ki � ul�ijpl� ����

This facilitates the computation of K�
The zero�energy classical trajectories emanating from the attractor� sometimes called

optimal trajectories� have a direct physical interpretation! they are the most probable  uc�
tuational trajectories� If a noise�induced  uctuation from S to x occurs� in the limit of weak
noise it should occur with increasing likelihood along an optimal trajectory terminating
at x� Such trajectories have been seen experimentally ���	� In the weak�noise limit the most
probable escape path �MPEP� will be the least�action optimal trajectory extending from S
to the limit cycle 	�� Normally this trajectory will spiral into 	�� rather than crossing 	�
in �nite time� for the following reason� If the MPEP crossed the limit cycle� the crossing
point would be a �hot spot� through which escape would preferentially occur� The tangential
derivative 	tW �i�e�� the tangential momentum pt� would necessarily be zero there� But the
normal drift velocity un equals zero on 	�� So the second term in eq� ��� would vanish at the
hotspot� If D is nondegenerate� eqs� ���
��� imply that p � � there� i�e�� �x � u� That is�
the ostensible MPEP would be a deterministic trajectory� which is impossible� The MPEP
normally spirals into the unstable limit cycle even when D is degenerate� In Fig� � we show
the MPEP of the van der Pol model ���
����

Multivaluedness��Dykman� Millonas� and Smelyanskiy ���	 and the present authors ��	
have stressed that W and K may be multivalued functions of the system state x� since any
given point x may be the endpoint of more than one optimal trajectory� This normally
happens in models with an unstable limit cycle� as Fig� � shows� Optimal trajectories that
are perturbations of the MPEP do not spiral into the limit cycle� Rather� they approach it�
and wind around the region � a number of times� all the while deviating farther from the
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MPEP� They eventually exit from � �if the perturbation is in the outward direction� or
move back toward the attractor �if the perturbation is inward�� As a consequence� any
point x near the unstable limit cycle is the endpoint of any of an in�nite� discrete set of
optimal trajectories� which di
er from each other in their winding number l� which may be
arbitrarily large� W and K are in�nite�valued � and the WKB approximation ��� generalizes
to

���x� �
X
l

K�l��x� exp
�
�W �l��x���

�
� ����

In the weak�noise limit� this sum is dominated by the term with minimumW �l��x�� Equiv�
alently�  uctuations to any point x in �� in the limit of weak noise� proceed preferentially
along the physical optimal trajectory from the attractor to x! the least�action one� Sub�
dominant trajectories contribute at larger noise strengths� however�

We shall use ���� to compute the  ux of Brownian particles over the barrier 	�� We �rst
approximate W �l� and K�l� near 	� by extending the results of Naeh et al� ��	� As a �rst
attempt� suppose that W is single�valued and �to leading order� quadratic near 	�� so that
it can be approximated as �W � W�nnn

���� Here n is the distance in from 	�� in the
normal direction� and the second normal derivativeW�nn � 	pn�	n � � depends on position
along 	�� The matrix equation ���� yields

�W�nn � �Dnn �W�nn�
� � �un�nW�nn � ����

a Riccati equation along 	�� The �nal term in ���� has dropped out� as p � rW is zero
on 	� if W behaves quadratically there� W�nn as a function of position along 	� may be
computed from ���� by integration ��	�

A problem with this approach was pointed out by Graham and T�el �����	� Assuming that
W is single�valued near the unstable limit cycle is much the same as assuming that optimal
trajectories that are perturbations of the MPEP� as well as the MPEP itself� spiral into the
limit cycle� What actually happens near 	� is revealed by a Poincar�e section� Suppose we
choose some point on 	�� and plot the pair �n� pn�� i�e�� normal displacement and normal
momentum� for each optimal trajectory that passes nearby� If W were quadratic in n� i�e��
pn � 	W�	n were linear in n� the points �n� pn� would lie on a line with slope W�nn passing
through ��� ��� What happens instead is shown in Fig� �� The MPEP generates points that
tend to ��� �� geometrically� and lie along the dashed line pn � W�nnn� But perturbations
of it generate points that lie along the horizontal solid lines�

Figure � can be interpreted in terms of a �return map� that updates �n� pn� whenever
an optimal trajectory winds once around �� This map will have ��� �� as �xed point� For
the MPEP to spiral into 	� and yield points along the ideal line� the linearized return
map at ��� �� must have ���W�nn� as an eigenvector� with eigenvalue less than �� And since
deterministic �p � �� trajectories that �peel o
� from 	� do so geometrically� ��� �� must also
be an eigenvector� with eigenvalue greater than �� By Liouville�s Theorem these eigenvalues
must be reciprocals� so we denote them c�� and c� With each turn� the MPEP decreases its
distance from 	� by a factor c� and deterministic trajectories that diverge from 	� increase
their distance from it by a factor c�

Figure � can now be explained� Suppose the MPEP intersects the �n� pn� plane at
a���W�nn�� Optimal trajectories that are small perturbations of the MPEP will intersect it
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at a���W�nn���v� where � is the perturbation strength and v is model�dependent� We write
v � 
s���W�nn��
u��� ��� where 
s� 
u �� � in general� By iterating the return map� we see
that after winding l more times� the trajectories intersect the �n� pn� plane at

ac�l���W�nn� � �
uc
l��� ��� ����

The 
s term has been dropped here� since it becomes negligible with respect to the 
u term
as l��� It is the second term in ���� that gives rise to the horizontal solid lines of Fig� ��
as � is varied away from zero�

On the MPEP� the nonequilibrium potential W behaves quadratically near 	�� In par�
ticular� at n � ac�l� W 	 �W �W�nn�ac

�l����� It follows that the l�th value W �l��n� of the
in�nite�valued function W �n�� which arises from trajectories that wind l times around 	��
is

W �l��n� 	W �ac�l� � �	W�	n�
�
n� ac�l

�
����

� �W �W�nn�ac
�l���� � ac�lW�nn

�
n� ac�l

�

� �W �W�nn

�
ac�ln� a�c��l��

�
�

Each W �l�� as a function of the normal distance n� is to leading order linear� not quadratic�
This has been noticed by Graham and T�el �����	� who also noted that if one plots the
physical �i�e�� minimum� value of W �n�� one obtains a piecewise linear approximation to the
ideal parabola �W �W�nnn

���� The physical W is nondi
erentiable at a sequence of points
converging to n � ��

Oscillatory Asymptotics��To apply the Kramers method� we need the prefactors K�l��
as well as W �l�� At any x� K�l� is computed by integrating eq� ���� along an optimal
trajectory that winds l times around �� and terminates at x� We must distinguish here
between the �ideal� W�nn� which is a mathematical abstraction �the periodic solution of the
Riccati equation ������ and the actual second derivatives 	�W �l��	xi	xj� It is the latter
that appear in ����� In both ���� and Fig� �� which were computed on the basis of the
linearized return map� 	�W �l��	n� � �� and hence 	�W �l��	xi	xj � �� for every l� Keeping
higher�order terms would keep the second derivatives 	�W �l��	xi	xj from being identically
zero� but they would still fall to zero as 	� is approached�

It follows that when computing K near 	�� we may replace ���� by �K 	 � �r � u�K�
In the limit of large winding number l� which involves integration along a trajectory that
spirals ever closer to 	�� this yields K�l	���K�l� � exp��

H
�r � u� dt	� the integral being

taken once around 	�� By examination� this limiting quotient equals c��� We shall write
K�l� 	 Ac�l� where A is a function of position along 	�� This n�independent approximation
is increasingly accurate as n� ��

Substituting the approximations for K�l� and W �l� into ���� yields an approximation to
the steady�state probability density near the unstable limit cycle� i�e��

���n��Ae��W��
X
l

c�l exp
n
�W�nn

h
ac�ln � a�c��l��

i
��
o

�Recall that W�nn � ��� It follows that J ���	 � n� the normal component of the probability
 ux density at n � � �i�e�� through 	��� is to leading order
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const � e��W��
X
l

c��l exp
�
�a� jW�nnj c

��l���
�
�

The sum over winding number l may be approximated by a discrete analogue of Laplace�s
method� As � � �� the dominant terms in the sum have l 	 jlog �j �� log c� Let l� be the
greatest integer less than or equal to jlog �j �� log c� and let h � jlog �j �� log c� l�� Changing
the summation variable to k � l� l� allows one to approximate J ���	 �n in the �� � limit�
up to a constant factor� by

�qe��W��
�X

k���

c���k�h� exp
�
�a� jW�nnj c

���k�h���
�
�

Here q � �� � � log c� ��� and the summation is periodic in h with period unity� Equivalently�
the summation is periodic in jlog �j with period � log c� Substituting this  ux density into ����
which involves an integral over 	�� yieldsR � const��be��W��G �jlog �j�� where the exponent
b � q � �� and the function G�
� must have period � log c� This is the promised oscillatory
rate formula� Interestingly� b varies continuously as the model is changed�

Discussion��The slowly oscillating factorG �jlog �j� is related to a phenomenon discussed
elsewhere ��	� If the noise strength � is small� escape across a quadratic barrier follows the
formally most probable escape path �the MPEP� only until it gets within an O������ distance
of the barrier� Thereafter escape occurs di
usively� rather than ballistically� Since the MPEP
in the models considered here spirals geometrically into the barrier 	�� the point at which
it gets within an O������ distance will cycle around � as � � �� periodically in jlog �j�
�Cf� Day ������	�� In fact� the period will be � log c� If the e
ective di
usivity varies with
position along 	�� one would expect the escape rate R to be periodically modulated� That
is what we have shown to occur�

We expect the phenomenon of slow oscillations is relevant to stochastic resonance in
multistable continuous systems� Hu Gang et al� ���	 have recently considered such systems�
with the addition of time�periodic forcing and external noise� Steady states are then periodic
attractors� separated by unstable limit cycles� In the weak�noise limit� the rate of noise�
induced transitions should therefore include an oscillatory factor�

This research was partially supported by the National Science Foundation under grants
NCR��������� and DMS��������� �RSM�� and by the U�S� Department of Energy under
contract DE�FG�����ER����� �DLS��
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FIG� 
� The unstable limit cycle �� of the van der Pol model� and the MPEP� which emerges

from the attractor ��� �� and spirals into it� The trajectories exiting from � are optimal trajectories

that are perturbations of the MPEP�
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FIG� 	� A Poincar�e section� This sketch shows the points �n� p
n
� generated by the optimal

trajectories passing by some speci�ed point on ��� The dots are generated by the MPEP� spiralling

into ��� Cf� Figs� 
�� of Graham and T�el �
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