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INFORMATION FLOWS IN CAUSAL NETWORKSNIHAT AY1 AND DANIEL POLANI2Abstract. We introduce a notion of causal independence based on virtual intervention, whichis a fundamental concept of the theory of causal networks. Causal independence allows forde�ning a measure for the strength of a causal e�ect. We call this information ow and compareit with known information ow measures such as the transfer entropy.Contents1. Introduction 12. Directed Acyclic Graphs 23. Causal Models 44. Causal Independence 65. A De�nition of Information Flow 86. Information Flows in Markov Chains 117. Application Scenarios 128. Conclusions 13Acknowledgments 14References 141. IntroductionWhat is mind? No matter.What is matter? Never mind. George BerkeleyInformation theory provides important quantities for the characterization of complex systems,and there are also some reasons to believe that it pervades the physical world in general (Wheeler,1990). The use of the measure of Shannon's mutual information is ubiquitous in this context.A particular interest lies in the identi�cation of the \ow of information", in the sense as toidentify how information is processed in a given system. For this purpose, typically variantsof mutual information measures are used (Shaw, 1981, 1984; Matsumoto and Tsuda, 1988;Schreiber, 2000). However, as much as these measures are used in the context of a \ow ofinformation", they are essentially of correlative character. This, in particular, creates somesituations where such quntities are di�cult to be interpreted as a \ow". The utility of havinga proper measure for a \ow of information" can be seen in a number of recent papers thatuse simpli�ed forms of information ow measures to characterize complexity of informationprocessing (Wennekers and Ay, 2005), robustness (Ay and Krakauer, 2006), or information1N. Ay: Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig, Germany &Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA2D. Polani: Algorithms and Adaptive Systems Research Groups, School of Computer Science, University ofHertfordshire, Hat�eld AL10 9AB, United KingdomDate: May 12, 2006. 1



2 NIHAT AY1 AND DANIEL POLANI2processing in agents (Klyubin et al., 2004, 2005). Thus, the variety of applications for a notionof information ow signals an increased need for a well-founded measure of information ow andpromises a wide and fruitful scope of applications for such a measure.How to go about constructing such a measure? As we mentioned above, a pure correlativemeasure does not precisely �t the bill. Di�erent parts of a system may share information (i.e.have mutual information), but without information owing between these parts. Rather thejoint information stems from a common past.For an intuitive picture how to move towards a measure of information ow, consider e.g. ariver whose waterow one wishes to track. The standard method to track the waterow is tointroduce a tracer (color or radioactivity) into the river and to trace the occurrence of this tracerthroughout the river (Werner et al., 1997). Central for the success of the method is that thetracer consists of a material not usually found in the river.In a similar mode, one could try to trace down information in a system. Given an informationprocessing system, one would add (\inject", Klyubin et al., 2006) some noise uncorrelated withany of the unperturbed parts of the system and measure the mutual information of di�erent partsof the perturbed system with the noise. Since the noise is uncorrelated with the unperturbedsystem (corresponding to the tracer material not found in the river before the measurement),any mutual information found is an indicator for an information ow.There is, however, a central di�erence to measuring the ow of matter (as in the river illustra-tion). Matter ows are additive. This allows to estimate the unperturbed ows via in�nitesimalperturbations of the system. Information ows, however, are non-additive. Thus, one can notexpect naive \active probing" to be a suitable direct measure for the information ow in anunperturbed system (Klyubin et al., 2006). This task of calculating the information ow in theunperturbed system will occupy us for the rest of this paper.Similar to the models of material ow, we will employ graph models. The realization of theinformation-theoretic perspective is achieved by considering the nodes of this graph to be ran-dom variables. The formalism to do so, (causal) Bayesian networks, is well developed. Above\injection" of information is modeled in this context as intervention in a given network, i.e. asa modi�cation of the original network (Pearl, 2000). In particular, this is intimately connectedwith a thoroughly studied framework for the treatment of causal dependencies (Lauritzen, 2005,1996). The concept of information ow that we will develop on the basis of causal Bayesiannetworks can be seen as an information-theoretic counterpart of the probabilistic formalism from(Pearl, 2000).As in (Pearl, 2000), we will consider Bayesian networks with a �nite number of nodes who takeon a �nite discrete number of states. While it is di�cult to say whether the formalism generalizeseasily to systems with continuous nodesets, we expect the formalism to generalize naturally tothe case where the state spaces for the nodes may be continuous.2. Directed Acyclic GraphsWe consider a �nite set V 6= ; of nodes and a set E � V � V of edges between the nodes. Sucha directed graph G := (V;E) serves as a model for the causal interactions of the nodes, andwe write v ! w if (v; w) 2 E. Two nodes v; w are adjacent , in symbols v � w, if v ! w orw ! v. An ordered sequence (v1; : : : ; vk) is called a path from from v1 to vk if vi � vi+1 for alli = 1; : : : ; k � 1. A path is directed if it satis�es vi ! vi+1 for all i = 1; : : : ; k � 1. If v1 = vk,the directed path is called directed cycle. A directed graph without directed cycles is called adirected acyclic graph (DAG).



INFORMATION FLOWS IN CAUSAL NETWORKS 3In his graphical models approach to causality, Pearl (Pearl, 2000) assumes DAG as the structuralspeci�cation of causal networks. Within this approach one aims at understanding the relationbetween these structural and the corresponding observational properties such as stochastic de-pendence or independence of the nodes. In this regard d-separation (d stands for directional)has been identi�ed as the graphical separation property that is consistent with stochastic con-ditional independence (see Theorem 1). It is de�ned as follows: We say that a path (v1; : : : ; vk)is blocked by a set S, if there is a node vi of the path such that� either vi 2 S, and edges of the path do not meet head-to-head at vi, or� vi and all its descendants are not in S, and edges of the path meet head-to-head at vi.A set A is d-separated from B by S if all paths from A to B are blocked by S. While this con-dition is characterized by its consistency with stochastic conditional independence structures,Pearl's notion of causality suggests an unidirectional separation condition as graphical represen-tation of causal conditional independence structures, which we call ud-separation:De�nition 1 (ud-Separation). Let G = (V;E) be a DAG, and let A;B; S be three disjointsubsets of V . We say that B is ud-separated from A by S (in G) if all directed paths from A toB go through S. If this is the case, we write (B ?ud A jS)G or, to simplify notation, B ?ud A jS.Example 1 (DAG Layers). Let G = (V;E) be a DAG. We stratify the set V in a naturalway into layers. We start with V1 := fv 2 V : pa(v) = ;g. Obviously, V1 is not empty,because otherwise we could construct a directed cycle. In order to get the next layers we iterateaccording toVk+1 := fv 2 V n (V1 [ � � � [ Vk) : pa(v) \ (V1 [ � � � [ Vk) 6= ;g; k = 1; 2; : : :For some k, Vk+1 is an empty set, and therefore all sets Vk+2; Vk+3; : : : , are also empty. WithL := maxfk : Vk 6= ;g we have the disjoint unionV = V1 [ � � � [ VLand the corresponding map l : V ! f1; : : : ; Lg that assigns to each v 2 V its layer number l(v).
V1V2V3Now, it turns out that for 1 � r < s < t � L, the layer Vt is ud-separated from Vr by Vs. Inorder to see this, consider a directed path (v1; : : : ; vk) from Vr to Vt. Then the correspondinglayer numbers l(v1); l(v2); : : : ; l(vk) start with r and end with t. By de�nition of the layers weknow that for l(vi+1) > l(vi) we always have l(vi+1) = l(vi) + 1. This implies that the numbershave to go through s, and therefore the path (v1; : : : ; vk) meets Vs.



4 NIHAT AY1 AND DANIEL POLANI2Proposition 1. Let G = (V;E) be a DAG, and let A;B; S be three disjoint subsets of V . If Bis d-separated from A by S, then B is also ud-separated from A by S.Proof: Let (v1; : : : ; vk) be a directed path from A to B. The d-separation property implies thatthis path is blocked by S. Because all nodes in the path are head-to-tail, that is ! vi !, theonly way for the path to be blocked by S is that there exists a vi 2 S. 2Example 2. Consider the set V := f1; 2; 3; 4; 5g of nodes and the setE := f(1; 2); (1; 3); (2; 3); (4; 2); (3; 5)gof edges as shown in the following �gure: 5
3
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Furthermore, A := f1g; B := f4; 5g; S := f3g. Obviously, B is ud-separated from A by S butnot d-separated. 3. Causal ModelsIn Section 2 we presented the structural model for causal interactions. In order to specify theseineractions we need a concrete mechanistic description of the nodes. We assume that each nodev 2 V has a non-empty and �nite set Xv of states. Given a subset A, the con�gurations in A arethe elements of the set XA := Qv2AXv, and one has the canonical projections XA : XV ! XA,x = (xv)v2V 7! xA := (xv)v2A. We now describe the mechanisms of the nodes v by Markovkernels pv : Xpa(v) �Xv ! [0; 1]; (xpa(v); xv) 7! pv(xvjxpa(v))Given a DAG G, we call a family of local kernels pv, v 2 V , a G-causal model . The correspondingjoint distribution is then given by p(x) = Yv2V pv(xvjxpa(v))(1)We have the following central theorem by Verma and Pearl (Pearl, 2000):



INFORMATION FLOWS IN CAUSAL NETWORKS 5Theorem 1 (Verma & Pearl, 1988). Let G = (V;E) be a DAG, and let A;B; S be threedisjoint subsets of V . Then B is d-separated from A by S if and only if for all G-causal modelsXA and XB are stochastically independent given XS (with respect to the joint distribution (1)).This theorem establishes the connection between the underlying graphical structure of a causalmodel and the corresponding stochastic independence structure with respect to the joint distri-bution. The deviation from stochastic independence can be quanti�ed by information-theoreticmeasures like mutual information, conditional mutual information, or multi-information. Thisway, the qualitative nature of stochastic independence is embedded in a quantitative theory,which allows for the identi�cation of stochastic interdependencies among the nodes. In appli-cations this is often misinterpreted as identi�cation of causal relationships. In this paper wepresent a quantitative theory of causal dependence that is based on our notion of ud-separationinstead of d-separation. Theorem 2, our main result, will be an analogon to Theorem 1. In whatfollows we need the notion of causal e�ects (Pearl, 2000), which is based on the possibility tointervene in causal models. For didactical reasons we de�ne causal e�ects in two steps.Step 1: Basically, we split the node set V into a subset C of nodes that are intervened andthe subset D of remaining nodes which are observed. Let xC be a con�guration in C. SettingXC = xC means replacing all mechanisms pv, v 2 C, in (1) by the constants xv, v 2 C. Atransparent representation of the corresponding post-interventional distribution is obtained byconsidering the probability of observing a con�guration xD in the complement D := V nC of Cafter having set xC . p(xDjx̂C) := Yv2D pv(xvjxpa(v))(2)Compared with the pre-interventional distribution (1), the post-interventional distribution (2)is obtained just by neglecting all factors pv where v is an element of C (truncated factorization).Note that this interventional conditioning, in contrast to observational conditioning, is de�nedfor all xC 2 XC . The map (xC ; xD) 7! p(xDjx̂C) is called direct causal e�ect C ! D as indicatedin the following �gure:
C

D
For a subsetA of C and a con�guration xCnA 2 XCnA, we call the map (xA; xD) 7! p(xDjx̂A; x̂CnA)direct causal e�ect A! D imposing xCnA.Step 2: In order to deal with causal e�ects that are mediated by some uncontrolled variables weconsider an arbitrary subset B of D as shown here:



6 NIHAT AY1 AND DANIEL POLANI2
C

D B
The probability of observing XB = xB after having set XC = xC by intervention is given byp(xB jx̂C) = XxDnB p(xB ; xDnB jx̂C) = XxDnB Yv2D p(xvjxpa(v))The corresponding map (xC ; xB) 7! p(xB jx̂C) is called causal e�ect C ! B. Similar to thedirect e�ects of the �rst step we consider a subset A of C and a con�guration xCnA 2 XCnA.The map (xA; xB) 7! p(xB jx̂A; x̂CnA) is the causal e�ect A! B imposing xCnA.4. Causal IndependenceWe want to study causal independence. To this end, �rst let us have look at stochastic in-dependence: Let A;B; S be three disjoint subsets of V . Then XA and XB are stochasticallyindependent given XS if for all xA; xS with positive probability p(xA; xS) and all xBp(xBjxA; xS) = Xx0A p(x0AjxS) p(xB jx0A; xS) � = p(xB jxS)�(3)This condition means that observing xA after having observed xS does not change our expecta-tion of observing xB. An interventional version of this would be: Setting xA after having set xSdoes not change the probability of observing xB . This corresponds to the following condition:p(xB jx̂A; x̂S) = Xx0A p(x0Ajx̂S) p(xB jx̂0A; x̂S)(4)Unlike the conditional probability p(xB jxA; xS), the interventional probability p(xB jx̂A; x̂S) isde�ned for all pairs xS; xA rather than being limited to those with positive probability. This isdue to the fact that interventional probabilities are de�ned via mechanisms rather than obser-vations. Being able to formulate this stronger condition allows us to de�ne that XB is causallyindependent of XA imposing XS , writtenXB ?? XA j bXSif condition (4) is ful�lled for all pairs xS ; xA. Note that this speci�cally includes situationsof \unseen" or \unprobed" causal dependence, which is induced by the network mechanisms.Furthermore, note that the causal independence property is not symmetric. This is consistentwith our intuitive understanding of causality as a directional concept. In particular, this notionof independence is governed by rules that are di�erent from those underlying a graphoid structure(Pearl, 2000).



INFORMATION FLOWS IN CAUSAL NETWORKS 7Now we are ready for our main result of the paper, which, in analogy to Theorem 1, relates theud-separation property associated with the graphical structure of a causal model to the causalindependence relation, which depends on the speci�cation of the local conditional probabilities.Theorem 2. Let G = (V;E) be a DAG, and let A;B; S be disjoint subsets of V . Then B isud-separated from A by S if and only if for all G-causal models XB is causally independent ofXA imposing XS.Proof:\only if": We assume that B is ud-separated from A by S, and set D := V n (A [ S). We aregoing to prove that p(xBjx̂A; x̂S) does not depend on xA. To this end we de�neA0 := fv 2 V : there exists a directed path from A to v that doesn't meet Sg; B0 := V n A0:
A A0 S

B0B
By de�nition one has A � A0 and S � B0. Furthermore, B ?ud A jS implies B � B0. Thus, wecan decompose D into a disjoint union of the sets A0 nA and B0 n S. Now we are ready to provethat p(xB jx̂S ; x̂A) does not depend on xA:p(xB jx̂A; x̂S) = XxDnB p(xB; xDnB jx̂A; x̂S)= XxDnB Yv2D pv(xvjxpa(v))= XxA0nA XxB0n(S[B) Yv2A0nA pv(xv jxpa(v)) Yv2B0nS pv(xvjxpa(v))= XxB0n(S[B) Yv2B0nS pv(xvjxpa(v)) XxA0nA Yv2A0nA pv(xvjxpa(v))| {z }=1= XxB0n(S[B) Yv2B0nS pv(xvjxpa(v))The de�nition of A0 and B0 implies that for all v 2 B0 n S one has pa(v) � B0. Therefore all theexpressions pv(xvjxpa(v)) of the last line, and therefore also p(xB jx̂A; x̂S), do not depend on xA,which implies equation (4).\if": We assume that XB is causally independent of XA imposing XS for all G-causal modelsand want to prove that B is ud-separated from A by S. We de�ne Xv := f0; 1g for all v 2 V .Assume that there is a directed path (v1; : : : ; vk) from A to B not intersecting S. Withoutrestriction of generality we can assume vi =2 A[B for all 1 < i < k. Every node vi, i = 2; : : : ; k,



8 NIHAT AY1 AND DANIEL POLANI2just copies the state of vi�1, which is contained in the set pa(vi):pvi(xvi jxpa(vi)) := � 1; if xvi = xvi�10; otherwiseAll other nodes are assumed to choose their state completely randomly according to pv(xvjxpa(v)) :=12 . p(xB jx̂A; x̂S) = XxDnB Yv2D pv(xv jxpa(v))= XxDnB kYi=2 pvi(xvi jxpa(vi)) Yv2Dnfv2;:::;vkg pv(xvjxpa(v))= 12jDj�k+1 XxDnB kYi=2 pvi(xvi jxpa(vi))= 12jDj�k+1 XxDnB �xv1 (xv2)�xv2 (xv3) � � � �xvk�1 (xvk)= 12jBj�1 �xv1 (xvk)Thus p(xBjx̂A; x̂S) clearly depends on xA, and therefore XB is not causally independent of XAimposing XS . 2Combined with Theorem 1 this result directly implies the following corollary.Corollary 1. Let G be a DAG, and let A;B; S be three disjoint subsets of V . If for all G-causalmodels XB is stochastically independent of XA given XS, then for all G-causal models XB iscausally independent of XA imposing XS .Proof: Stochastic independence for all G-causal models is, according to Pearl, equivalent tod-separation. On the other hand, according to Proposition 1, d-separation implies ud-separationand therefore causal independence. 2
5. A Definition of Information FlowIn order to quantify causal dependence we �rst have look at the stochastic dependence case.Stochastic dependence is measured by deviation from independence, more precisely, the deviationof the left-hand side of (3) from its right-hand side. In order to do so, we need to specify a measureof deviation or distance between transition kernels. The application of the relative entropy assuch a measure turns out to be very consistent with information-theoretic concepts. With aprobability distribution p on XC , the relative entropy of two transition kernels P and Q fromXC to XB is de�ned asDp(P kQ) := XxC p(xC)XxB P (xB jxC) log P (xB jxC)Q(xB jxC)



INFORMATION FLOWS IN CAUSAL NETWORKS 9Here we apply the usual convention that 0 log 0r = 0 and s log s0 = 1 for all r � 0 and alls > 0. Throughout the paper log stands for the binary logarithm log2. Using this deviationmeasure the stochastic dependence of XA and XB given xS is quanti�ed as the deviation fromindependence.Ip(XA : XB jxS) := XxA p(xAjxS)XxB p(xB jxA; xS) log p(xB jxA; xS)Px0A p(x0AjxS) p(xB jx0A; xS)(5)Taking the mean with respect to p(xS), xS 2 XS , gives usIp(XA : XB jXS) = XxS p(xS) Ip(XA : XB jxS)(6)This is called the conditional mutual information of XA and XB given XS . In the case whereS is the empty set, this quantity reduces to the mutual information Ip(XA : XB). One has thefollowing property XB ?? XA jXS , Ip(XA : XB jXS) = 0:Now let us come back to causal dependence. Similarily to (5) we de�ne it as deviation fromcausal independence, which is given by equation (4): The causal contribution of XA to XBimposing xS is measured byIp(XA ! XB j x̂S) := XxA p(xAjx̂S)XxB p(xB jx̂A; x̂S) log p(xB jx̂A; x̂S)Px0A p(x0Ajx̂S) p(xB jx̂0A; x̂S)By taking the mean, we obtain the information ow from XA to XB imposing XS :Ip(XA ! XB j bXS) := XxS p(xS) Ip(XA ! XB j x̂S)It has the same structure as (6), and it is a measure for the \visible" contribution of a causale�ect. In the extreme case where S is empty the information ow quanti�es the total causale�ect which is mediated by all variables in V n (A [ B), and we simply write Ip(XA ! XB) inanalogy to the mutual information. In the other extreme case where S is the complement of Aand B in V the information ow quanti�es the direct causal e�ect A! B.Proposition 3. XB ?? XA j bXS ) Ip(XA ! XB j bXS) = 0(7)If XS exhausts XS, i.e. all outcomes xS 2 XS have a nonvanishing probability p(xS), thenimplication (7) becomes an equivalence.Proof: Follows directly from the properties of the relative entropy. 2A combination of this statement with Theorem 2 directly implies the following:Corollary 2. If Ip(XA ! XB j bXS) > 0 then there exists a directed path from A to B that doesnot meet S.Example 3 (Diamond Structure). Consider the following graph with the nodes V = fW;X; Y; Zgand edges E = f(W;X); (W;Y ); (Y;Z); (X;Z)g.
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W X

Y Z
We assume that all nodes have as state set f0; 1g. Node W generates a state w with probabilityp1(w) = 12 , which is then copied by the nodes X and Y . Finally, node Z generates the XORvalue of the two states x and y, which, in this case, is always 0. These mechanisms give us thefollowing joint distribution:p(w; x; y; z) = 12 �w(x) �w(y) �XOR(x;y)(z)By straightforward calculations we obtain the following quantities which illustrate that, in gen-eral, our measures of correlation and causation express di�erent aspects of the system:Correlation CausationIp(X : Y ) = 1 Ip(X ! Y ) = 0Ip(X : Y jW ) = 0 Ip(X ! Y jcW ) = 0Ip(W : Z jY ) = 0 Ip(W ! Z j bY ) = 1Example 4 (Channel Splitting). Consider three nodes X = (X1;X2), Y , and Z = (Z1; Z2).Node X generates a pair (x1; x2) 2 f0; 1g � f0; 1g with probability pX(x1; x2). One entry, sayx1, is copied by Z1. The second entry x2 �rst goes to Y and then to Z2. This gives the jointdistribution p(x1; x2; y; z1; z2) = pX(x1; x2) �x2(y) �x1(z1) �y(z2)

X = (X1;X2) Z = (Z1; Z2)Y
An easy calculation shows that the information ow from X to Z imposing Y coincides withthe entropy Hp(X1) of X1: Ip(X ! Z j bY ) = Hp(X1)If Y were not imposed, then the total ow from X to Z would just be Hp(X), i.e. the full entropyof the input node X.



INFORMATION FLOWS IN CAUSAL NETWORKS 11Example 5 (Mediated Flow). Consider the graph shown in Example 3 with the nodesW ,X,Y ,and Z. Again, W generates a symbol w 2 f0; 1g with probability 12 , which is then copied by thenodes X and Y . For the node Z we consider two cases:Case 1: Z is assumed to copy the state fom X, and we have the joint distributionp(w; x; y; z) = 12 �w(x) �w(y) �x(z)(8)The conditional mutual information Ip(X : Z jY ) vanishes, because X and Y provide the sameinformation for Z. On the other hand, our information ow measure Ip(X ! Z j bY ) has themaximum achievable value of 1 bit. Note that this is equal to the unintervened information owIp(X ! Z).Case 2: We modify the machanism of Z for the counterfactual situation where X and Y aredi�erent. In that situation Z is now assumed to generate a symbol z 2 f0; 1g with probability 12 .The mechanism for identical x and y remains as in the �rst case. We have the joint distributionp(w; x; y; z) = 12 �w(x) �w(y) � � �x(z); if x = y12 ; if x 6= y(9)which coincides with the joint distribution (8) of the �rst case. But here, Y determines to someextent whether X can control the outcome of Z. More precisely, one hasIp(X ! Z j bY ) = 34 log 43 � 0:31The result lies signi�cantly below the maximum achievable information ow of 1 bit due to themediating e�ect of the imposed variable Y .6. Information Flows in Markov ChainsConsider a chain X1;X2; : : : ;Xn that is generated by an intitial distribution p0 and a (�xed)transition kernel pX . In this case we have the joint distributionp(x0; x1; : : : ; xn) = p0(x0) pX(x2jx1) � � � pX(xnjxn�1)X0 X1 : : : Xn�1 Xn
There is a �eld of research (Shaw, 1981, 1984; Matsumoto and Tsuda, 1988), which is notrestricted to this simple setting, but also deals with more general dynamical systems, thataims at relating the qualitative characteristics of a given dynamics to its information ow intime. Hereby, information ow is usually quanti�ed by the mutual information between a timeinterval [i; j] = fi; i + 1; : : : ; jg of the past and a time interval [k; l] = fk; k + 1; : : : ; lg of thefuture. Applied to our simple example, this would correspond to the mutual informationIp(X[i;j] : X[k;l]); 1 � i � j < k � l � n(10)Within the context of the present paper, it is natural to ask whether our de�nition of informationow is consistent with the de�nition (10). Indeed, a small calculation provesIp(X[i;j] ! X[k;l]) = Ip(X[i;j] : X[k;l])This consistency breaks down if one wants to quantify information ows among the elementsof a composite dynamical system. To make clear in what sense this is meant we consider twoprocesses X and Y as shown in the following �gure:
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(X0; Y0) Y1

X1
� � �
� � �

Yn�1
Xn�1 Xn

Yn
The processes are assumed to be generated by an initial distribution p0 and kernels pX and pYas followsp(x0; : : : ; xn; y0; : : : ; yn)= p0(x0; y0) pX(x2jx1; y1) pY (y2jx1; y1) � � � pX(xnjxn�1; yn�1) pY (ynjxn�1; yn�1)Schreiber (Schreiber, 2000) has proposed a measure, called transfer entropy , that, applied tothis situation, is intended to be capable of quantifying the information transfer from Y to X.For 1 � k < n, it is de�ned as the conditional mutual information Ip(Y[1;k] : Xk+1 jX[1;k]). Thefollowing simple but instructive example proves that the tranfer entropy does not necessarilycoincide with the information ow Ip(Y[1;k] ! Xk+1 j bX[1;k]):Example 6 (Information Exchange). We consider two observationally equivalent cases:Case 1: Assume that both nodes have states 0 and 1, and assume that at each time step k theyjust copy the state of the other node. If we start with a con�guration (x; y) according to thedistribution 12 ��(0;1) + �(1;0)�, we would observe a sequence � � � ! (0; 1) ! (1; 0)! (0; 1)! : : : .The transfer entropy vanishes in this case for all times k. This contradicts the intuition that bycopying the other node's state, clearly there is a ow of information. In consistence with thisintuition, our measure of information ow has the maximal value of one bit in this case.Case 2: Consider now the case that Xk+1 is the inversion of Xk for all k (i.e. 0 becomes 1, and1 becomes 0) and, likewise, Yk+1 is the inversion of Yk. In particular, there is no interactionbetween X and Y after their initial generation. This is observationally equivalent to the �rstcase and thus the transfer entropy remains 0. However, its interventional dynamics is di�erent,and the information ow Ip(Y[1;k] ! Xk+1 j bX[1;k]) becomes 0 in this case. Thus information owis able to distinguish the case of information being actively exchanged between the chains Xand Y and the case where there is no such exchange.In Examples 3 and 4 we imposed nodes lying between the \sender" and the \receiver" node. Theexamples show that imposing such nodes can both reduce (Example 4) or increase (Example 3)an information ow. The reduction of the ow by imposing intermediate nodes naturally �tsintuition. However, the increase of the ow by imposing a node is a typical example of howthe rules governing information ow di�er from naive material ow. The fact that informationow can both increase or decrease by imposing nodes is closely related to the fact that synergyIp(XA : XB jXS) � Ip(XA : XB) or triple mutual information quantities can be both positiveand negative (Schneidman et al., 2003; Adami, 1998; Bell, 2003).7. Application ScenariosIn Section 1, we have briey mentioned some useful applications for the concept of informationow. The usefulness of the concept extends beyond that. We believe that the above measure of



INFORMATION FLOWS IN CAUSAL NETWORKS 13the causal ow of information allows one to qunatify a number of phenomena. Here we wish togive a glimpse into possible perspectives for its future use.Physics: Via the unambiguous causal interpretation of the information ow it is possibleto enhance the identi�cation of causal relations and mechanisms in general physical sys-tems by a measure of their impact. This provides a new tool for quantitative studies ofdynamical and complex systems. It would be interesting to pursue in how far above con-cept of information ow could be applied to the computational mechanics / causal statesframework (Crutch�eld and Young, 1989; Shalizi and Crutch�eld, 2002).Synchronization: Synchronization is a phenomenon of great interest in the context of self-organization (Strogatz, 2004). The information ow formalism can help elicit which in-formation ows between the di�erent components of a system are involved to create thee�ects of global synchronization.Game Dynamics: Often one encounters game-theoretic scenarios with a dynamic compo-nent, i.e. two players that adapt their strategies over time or two populations where thedistribution of available strategies changes during evolution (Sato and Ay, 2006; Sato et al.,2005). Here, one often encounters dynamics moving towards cooperative or antagonisticplayer behaviour. Using information ow would allow one to attribute how much a givenplayer is \responsible" for the emergence of a particular cooperative or antagonistic out-come.Models for the Perception-Action Loop: In Section 1 some work using information ow-type quantities has been briey mentioned. Information-theoretic principles, long believedto be relevant for the understanding of biological information processing (Barlow, 1959;Atick, 1992) now begin to receive renewed attention (Linsker, 1988; Baddeley et al., 2000).Related to that, Bayesian and prediction-based concepts of the self-organization of theperception-action loop prove themselves increasingly successful (K�ording and Wolpert,2004; Der et al., 1999; Porr et al., 2006). The family of information ow methods thuspromises to provide a calculus by which principles guiding biological (and arti�cial) percep-tion-action loops can be identi�ed and formulated (Klyubin et al., 2004).The concept of information ow, with its causal character, provides an additional tool inthis arsenal of methods and could help to elucidate further issues relevant to the informationprocessing dynamics in biological and arti�cial agents.8. ConclusionsThe present work was motivated by the need for a systematic quanti�cation of the \ow ofinformation". In developing this concept, we desired to capture, on the one hand, essentialproperties of a Shannon-type quantity measurable in bits, while, on the other hand, realizing aow-like philosophy di�erent from the correlative nature of the notion of mutual information.This required us to deviate from the computation of mutual information which is based onpurely observational quantities. An adequate modi�cation of the formalism requires us to takeinto account the causal nature of the systems under study. For this, we used the interventionalformalism from (Pearl, 2000) which provided an appropriate framework for the causal mecha-nisms in the given system. The classical mutual information can be introduced by quantifyingthe deviation of two random variables from stochastic independence. Analogously, we intro-duced information ow as the deviation of two random variables from causal independence byappropriately adapting the quantities involved in establishing probabilistic independence.In a number of examples we have shown that our measure for information ow is indeed di�erentfrom other notions such as transfer entropy or other quantities related to mutual information;in particular, our information ow is indeed able to distinguish cases in an intuitive way whichobservational methods cannot distinguish (Example 6).



14 NIHAT AY1 AND DANIEL POLANI2Together with information ow, we have developed an appropriate modi�cation of well-establishedformalisms to �t the framework of causal Bayesian networks. Thus, we have shown how the no-tion of information ow comes together with a broad and robust set of conceptual tools.The concept of causality and information ow shows nicely how the possibility for intervention(or \experiment") modi�es our understanding about the world. Particularly striking is the factthat, while observational quantities are easier to obtain (no experiments are needed), the causalconcept of ud-separation seems more intuitive than the observational concept of d-separation;this is consistent with Pearl's philosophy insofar as causal knowledge seems to be less brittlethan observational (probabilistic) knowledge (Pearl, 2000).New notions are typically introduced as generalizations or adaptations of existing and establishedconcepts, driven by theoretical considerations. However, one of the strongest justi�cations forintroducing a new notion is the practical need for a notion with suitable properties. This exactlywas the case for information ow. If well constructed, such a notion can not just help coveringthe cases that motivated its introduction, but also open up pathways towards novel insights intosystems not previously considered. The conceptual framework and the scenarios studied in thepresent paper indicate that information ow may be a promising candidate to achieve this.AcknowledgmentsThe authors thank A. Bell, N. Bertschinger, J. Jost, D. Krakauer, E. Olbrich, Y. Sato, F.Sommer, T. Wennekers, A. Klyubin and C. Nehaniv for many fruitful discussions on the subjectof information ow. Nihat Ay thanks the Santa Fe Institute for supporting him as an externalfaculty member.
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