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Abstract

We have analyzed the base�pair probability distributions of ��S and
��S�like and ��S and ��S�like ribosomal RNAs of Archaea� Bacteria�
chloroplasts� mitochondria and Eukarya� as predicted by the parti�
tion function approach for RNA folding �McCaskill� �		
�� A quan�
titative analysis of the reliability of RNA folding is done by compar�
ing the base�pairing probability distributions with the structures pre�
dicted by comparative sequence analysis �comparative structure�� We
distinguish two factors that show a relationship to the reliability of
RNA minimum free energy structure� The 
rst factor is the domi�
nance of one particular base�pair or the absence of base�pairing for a
given base within the base�pairing probability distribution �BPPD��
We characterize the BPPD per base� including the probability of not
base�pairing� by its Shannon entropy �S�� The S value indicates the
uncertainty about the base�pairing of a base� low S values result from
BPPDs that are strongly dominated by a single base�pair or by the
absence of base�pairing� We show that bases with low S values have
a relatively high probability that their Minimum Free Energy struc�
ture �MFE� corresponds to the comparative structure� The BPPDs of
prokaryotes that live at high temperatures �thermophilic Archaea and
Bacteria� have� calculated at ��� C� lower S values� than the BPPDs
of prokaryotes that live at lower temperatures �mesophilic and psy�
chrophilic Archaea and Bacteria�� This re�ects an adaptation of the
ribosomal RNAs to the environmental temperature�

A second factor that is important to consider with regard to the
reliability of MFE folding is a variable degree of applicability of the
thermodynamic model of RNA folding for di�erent groups of RNAs�
Here we show that among the bases that show low S values� the Ar�
chaea and Bacteria have similar� high probabilities ��	� and �	� in ��S
and �	� and �	� in ��S� respectively� that the MFE corresponds to the
comparative structure� These probabilities are lower in the chloro�
plasts ���S �	�� ��S ��	�� mitochondria ���S�like ��	� ��S�like ��	� and
Eukarya ���S ���� ��S �����

Keywords� RNA secondary structure� RNA folding� Boltzmann distribution�
base�pairing probability distribution� ribosomal RNA�
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Introduction

The higher order structure of RNA is crucial in many of its functions� This is
exempli�ed by its conservation in evolution and by the in vitro selection from
random sequences of ribozymes for the same function with a similar base�pairing
pattern 	Ekland et al�� �

��� Within RNA structure the secondary structure
plays a central role� it covers the dominant energy contributions and provides the
major distance constraints for the formation of the tertiary structure� The free
energy of RNA secondary structure formation can be approximated by adding up
the experimentally determined free energies of its elements 	base pairs� hairpin
loops� bulges etc��� Predicting RNA secondary structure by �nding the structures
with the lowest free energies has become a major research tool in experimental
and theoretical biology� Here we analyze what a
ects the reliability of secondary
structure prediction by free energy minimization�

We have shown recently that the reliability of secondary structure predic�
tion for ribosomal RNAs 	rRNAs� varies between phylogenetic classes 	Konings
� Gutell� �

�� Fields � Gutell� �

��� The correspondence between minimal�
energy folding 	MFE� and secondary structure based on comparative sequence
analysis 	comparative structure� is highest for Archaea followed by 	eu�Bacteria�
The order of the other three classes� i�e� chloroplasts� mitochondria and Eu�
karya� varies between the ��S�like RNAs and the ��S�like RNAs� Here we ask
the question what underlies this variation in predictability� Is it the current ther�
modynamic model for calculating RNA secondary structure itself that for various
reasons applies less to Eukaryotic rRNAs than to prokaryotic rRNAs � For exam�
ple because Eukaryotic rRNAs have more non�standard interactions within the
RNA� or because they have more interactions with other molecules � Or can we
distinguish other factors that play a role � In answering this question we will
focus speci�cally on how the probability of 	sub�structures within the Boltzmann
distribution of alternative secondary structures is related to their predictability�

Secondary structure prediction by free energy minimization faces the prob�
lem that for any sequence there is an exponentially large number of possible
structures� Although in thermodynamic equilibrium the structure with the low�
est free energy has the highest probability� that probability is very small for long
sequences� For example� in thermodynamic equilibrium the probability of the
lowest free energy structure within the Boltzmann distribution is� for random se�
quences of the length of a ��S rRNA 	about ���� nucleotides�� generally smaller
than ������ A more interesting quantity than the probability of a speci�c large
structure is that of small substructures� This approach has been formalized by
McCaskill 	�

��� McCaskill�s algorithm focuses on the smallest sub�structure�
the base pair� It calculates the comprehensive base�pair probability distribu�
tion based on the free energies and resulting probabilities of all structures� In
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earlier work we have calculated the base�pairing probability distribution of an
entire HIV�� genome 	Huynen et al�� �

��� We have shown that the RNA sec�
ondary structures that are known to be a functional in HIV�� are relatively �well�
de�ned�� i�e� their base�pair probability distribution per base is dominated by a
single base�pair interaction or by the absence of base�pairing 	e�g� for bases in
hairpin�loops�� Here we analyze the base�pairing probability distributions of ��S
and ��S�like and ��S and ��S�like rRNAs�

We characterize the base�pairing probability distribution per base by its
Shannon�entropy 	S�� Low S values correspond to probability distributions that
are dominated by a single or a few probabilities� We then investigate the re�
lationship between the S value of a base and the prediction of its correct base
pairing pattern� as given in the comparative structure� by the minimum free en�
ergy structure� We discuss the nature of this relationship as revealed by the
rRNAs of di
erent phylogenetic groups and with regard to their environmental
temperatures�

Methods

analysis of the base�pairing probability matrix

The complete base pairing probability matrix as calculated with the Mc�
Caskill algorithm is a symmetric n � n matrix in which the entry 	i� j� is the
probability that base i is paired with base j� In practice� we do not use base
pairs that occur with a probability of less than ���� in our analyses� The algo�
rithm is part of the Vienna RNA Package 	Hofacker et al�� �

�� Zuker � Stiegler�
�
��� which can be down�loaded with anonymous ftp from ftp�itc�univie�ac�at� di�
rectory pub�RNA�ViennaRNA����b� The Vienna RNA Package uses free energy
parameters from 	Freier et al�� �
��� Jaeger et al�� �
�
� He et al�� �

���

We characterize the base�pairing probability distribution per base 	i� by its
Shannon�entropy 	Si��

Si � �
P

j Pi�j logPi�j

where Pi�j is the probability of base pairing between bases i and j� and Pi�j�i

is the probability that the base i does not pair with any other base� The lower
the S value� the stronger the distribution is dominated by a single or a few base�
pairing probabilities� Or� in other words� S values re�ect the uncertainty we have
about the base�pairing� The average S value of a sequence is the sum of the S
values of its bases divided by the sequence length�

In earlier work we characterized the probability distribution per base with its
maximum 	Huynen et al�� �

��� using the term �well�de�nedness of secondary
structure�� Although the qualitative results for the analyses presented here for
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Figure �� The relation between the average S value per 	random�sequence and its
length� For sequences of various length classes at least ������ nucleotides were
folded 	��� sequences of length ���� �� of length ��� etc��� The vertical bars
designate one standard deviation� The average S value increases sub�linear with
the logarithm of the length of the sequence and starts to saturate at a length of
����

both measures are the same� the entropy measure shows a higher correlation
with the probability that the MFE corresponds to the comparative structure� In
a recent paper Zuker and Jacobsen 	�

�� introduced �well determinedness� of
secondary structure� where a structure is well determined if there are no alter�
native structures within a certain range of free energy� Although the concept
is qualitatively very similar to our entropy or well de�nedness terms� the latter
allow for a quantitative much more re�ned analysis� since they include actual
probabilities�

In principle� one should scale the S value with the length of the sequence	N��
given that the maximum value of S is the logarithm of N� For long sequences
however 	N � ���� we observed that the average S value per base as a function
of sequence length increases less than linear with the logarithm of N� and sat�
urates to a value of about ��
 	Figure ��� also the distribution of S values per
sequence does not change for N � ��� 	data not shown�� Apparently the intrinsic
properties of the thermodynamic model of RNA secondary structure prediction
result even for very long sequences in only a limited number of bases with which
a base has a reasonable chance 	P �� ����� of pairing�

Comparing minimum free energy structures with comparative structures�
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Predicting base�pairing patterns by comparative sequence analysis is re�
viewed in 	Gutell et al�� �

��� The comparative structures of the RNAs used in
this analysis 	Gutell et al�� �

�� Gutell� �

�� can be found on http���pundit�colorado�edu�������
We consider a base predicted correctly in the MFE if it is paired to the same base
as in the comparative structure� if it is single�stranded in both the MFE and the
comparative structure and if it is single stranded in the MFE and non�canonically
base�paired 	non A�U� G�C or G�U� in the comparative structure� We also ex�
amined other de�nitions for correctly predicted bases� only considering bases
that are base�paired in the comparative structure� or de�ning that bases that
are non�standard base�paired in the comparative structure are always incorrectly
predicted in the MFE� We did not observe any signi�cant di
erences in the re�
lation between the S�value and the probability that a base is predicted correctly
in the MFE for the di
erent de�nitions of correctly predicted bases�

Results

Shannon entropy of base pairing probability distributions

For a set of ��S and ��S�like and ��S and ��S�like rRNA sequences of Archaea�
Bacteria� chloroplasts� mitochondria and Eukarya that span the phylogenetic tree
and represent the major forms of structural diversity 	table ��� we studied how
the average S value per sequence relates to the correspondence between the MFE
and the comparative structure� Figure � shows that there is a negative correlation
between the average S value per sequence and the percentage correctly predicted
base�pairs in the MFE� Thus� as the uncertainty about the base pairing pattern of
the sequence decreases� the MFE of the sequence becomes more reliable� Figure
� indicates that ��S rRNAs of Archaea have relatively low S values� followed by
Bacteria� the chloroplasts� the Eukarya and the mitochondria respectively� Also
for the ��S rRNAs the Archaea have the lowest S values followed by the Bacte�
ria� but there is no clear distinction between the other classes� To get a more
detailed view of the distribution of S values per class we plotted the distribution
of S values of all the sequences per class in cumulative histograms 	Figure ���
The Archaea clearly have the most bases with the low S values� followed by the
Bacteria� For the other classes the di
erences are less dramatic� and the order
di
ers for ��S	like� and ��S	like� rRNAs� A number of the Archaea species and
two of the Bacterial species in our set are thermophilic or hyper�thermophilic�
Since the lowest free energy state within the Boltzmann distribution becomes less
dominant with increasing temperature� low S values 	calculated at ��� C� might
re�ect an adaptation to high temperatures� For rRNA sequences that are avail�

Table �� Table � here
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able over a large range of optimal growth temperatures 	Archaea and Bacteria
��S rRNAs and Archaea ��S rRNAs� we analyzed how the average S value per se�
quences correlates with the optimal growth temperature� A negative correlation
between the average S value of the base�pairing probability distribution 	BPPD�
and the temperature at which the organisms live was indeed observed for all the
three groups 	Figure ��� In principle� calculations of the BPPD should be done
for the temperature at which the secondary structure functions� Although the
partition function calculation in the Vienna RNA Package allows for calculation
of secondary structure at di
erent temperatures� the extrapolation of the free
energy parameters is inaccurate for the extremely high temperatures 	� ��� C�
at which the hyper�thermophiles live� For example� folding the ��S rRNA of P�
occultum at its optimal growth temperature	���� C�� leads to a mostly single
stranded structure� As temperature increases the entropic contributions to the
free energy become more dominant� e
ectively melting the secondary structure�
The melting of the secondary structure increases the S values� as bases alter�
nate more between single stranded and double stranded states� Folding the same
sequence at increasing temperatures does indeed lead to higher S values of the
BPPD� and a lower probability of the MFE within the Boltzmann distribution
	data not shown�� The low S values we observe in the BPPD of the thermophiles
	optimal growth temperatures between ��� C and ��� C� and hyper�thermophiles
in the Archaea and in the Bacteria can therefore be explained as a result of adap�
tations to high temperatures� The G�C level of the ��S rRNAs in Archaea is
positively correlated with their environmental temperature 	Dalgaard � Garrett�
�

��� Although high and balanced G and C levels are necessary to get low free
energies of secondary structure 	Huynen et al�� �

��� and prevent melting at high
temperatures� they do not necessarily give rise to very well de�ned structures�
On the contrary� random sequences that consist of solely G and C have relatively
many alternative structures because they are very �sticky� 	Schuster et al�� �

���
every nucleotide can in principle pair with ��� of the other nucleotides� Ran�
domizing the sequences but not the base�composition of the hyper�thermophiles
resulted in a rise of the average S value for all of the sequences� The average S�
value for the hyper�thermophiles rose from ����� SD ���
 to ����� SD ����� which
is no di
erent than that for random sequences in which all nucleotide frequen�
cies are ���� 	Fig ��� Note that also the ��S rRNA sequences of the mesophiles
	optimal growth temperature between ��� C and ��� C� and the psychrophiles
	optimal growth temperature below ��� C� have in general S values that are lower
than the average for random sequences 	Figure ��� In Figure � the Archaea have
one outlier in the bottom�left� M� soehngenii� optimal growth temperature� ���

C� S value� ����� The genus Methanotrix has both mesophilic and thermophilic
species� the relative low S value value of M� soehngenii might be the result of a
recent adaptation of the species to the mesophile temperature range which is not
yet fully present in the ��S RNA�
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Figure �� Relation between the average S value and the reliability of the MFE�
Shown are the average S value per sequence and the degree to which the MFE
of that sequence corresponds to the comparative structure for ��S and ��S�like
rRNA 	top� and for ��S and ��S�like rRNA 	bottom�� Both the ��S	like� rRNAs
and the ��S	like� rRNAs show a negative correlation between the average S value
and the percentage correctly predicted bases� Correlation coe�cients over all the
sequences are ����� and ����� for the ��S	like� and the ��S	like� rRNAs respec�
tively�
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Figure �� The entropies for the ��S	like� and the ��S	like� ribosomal RNAs per
phylogenetic class� The S value per class is presented in a cumulative way� For
every class we score which fraction of the bases has an S value between � and
������ ����� and ������ ����� and ����� etc� The fractions are then added� The
line shows which fraction of the nucleotides have an S value below the value on
the x�axis� For both ��S rRNA	top� and ��S rRNA	bottom� the Archaea have
the most bases with low S values� followed by the Bacteria� For ��s rRNA the
chloroplasts have a lower S value than Eukarya which in turn have a lower S
value than the mitochondria� For the ��S rRNA the S values of the chloroplasts�
mitochondria and Eukarya are similar�
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Figure �� Relation between the optimal growth temperature and the average S
value� Shown are the optimal growth temperature and the average S value for
��S rRNA in Archaea and Bacteria 	top� and for ��S rRNA in Archaea 	bottom��
Only sequences with � or less unknown nucleotides were used� Data on optimal
growth temperatures are from 	Holt et al�� �

��� unless otherwise noted� When
an optimum growth temperature range was speci�ed� the temperature at the cen�
ter of the range was used� The overall correlation between S values and optimal
growth temperatures for ��S rRNA is ����� for the ��S Archaea it is ����� for
the ��S Bacteria it is ����� The species with their optimal growth temperatures
in degrees Centigrade are�
Archaea ��S� Acidianus brierleyi ��� Acidianus infernus ��� Archaeoglobus fulgidus






��� Desulfurococcus mobilis ���Metallosphaera sedula ���Methanobacterium formi�

cicum ���Methanobacterium thermoautotrophicum ���Methanococcoides burtonii

����� Methanococcus vannielli ����� Methanosphaera stadtmanii ��� Methanospir�

illum hungatei ����� Methanothermus fervidus ����� Methanotrix soehngenii ���
Pyrococcus furiosus ���� Pyrodictium occultum ���� Sulfolobus acidocaldarius ���
Sulfolobus shibatae ��� Sulfolobus solfataricus ��� Thermococcus celer 
�� Ther�
mo�lum pendens ��� Thermoplasma acidophilum ��� Thermoproteus tenax 
��

Bacteria ��S�Agrobacterium tumefaciens ��� Aquifex pyrophilus �� �� Arthrobac�
ter globiformis ����� Bacillus megaterium ��� Bacillus psychrophilus ��� Bac�
teroides fragilis ��� Borellia burgdorferi ��� Carnobacterium alterfunditum �� ��
Carnobacterium funditum �� �� Desulfurella acetivorans ����� Escherichia coli ���
Fervidobacterium gondwanalandicum ��� Flavobacterium salegens ��� Frankia alni
��� Psychrobacter immobilis ��� Renibacterium salmoninarum ����� Streptococcus
thermophilus ��� Sulfobacillus thermosul�dooxidans ��� Thermoanaerobacter cel�
lulolyticus ��� Thermoanaerobacter brockii ��� Thermoanaerobacter thermohydro�
sulfuricus ��� Thermoanaerobium lactoethylicum ��� Thermotoga maritima ���
Thermus thermophilus ���

Archaea ��S� A�fulgidus� D�mobilis� M�thermoautotrophicum� M�hungatei�
S�acidocaldarius� S�solfataricus� T�acidophilum� T�celer � T�pendens� T�tenax �

� 	Huber et al�� �

�� � 	Franzmann et al�� �

���

Relevance of the thermodynamic model of RNA folding

From the S value per base in a sequence we can analyze whether the correct
prediction of a base in the MFE depends on the S value of its base pairing
probability distribution� This is a more detailed analysis of the pattern that was
presented in Figure �� Instead of analyzing the correspondence between the MFE
and the comparative structure per sequence we analyze the correspondence per
S value of the bases� For all bases within one phylogenetic class that have an
S value between� say� ����� and ����� we can count for which fraction of these
bases does the MFE correspond to the comparative structure� This is a direct
measure of the applicability of the secondary structure model� As we have less
uncertainty about the base pairing behavior of a single base we expect that our
prediction of the minimum free energy structure of that base will be closer to
what is observed experimentally� or in this case� by comparative analysis�

The results 	Figure �� show that for all the classes there is a negative relation
between the S value of a base and the chance that it is predicted correctly� This
corresponds to the results averaged per sequence in Figure �� The relation is�
however� non�linear� The �rst part of the slope� between S value � and ���� is
steeper than the rest of the slope� For ��S rRNA we observe that the curve
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Figure �� Predictive value of the S value for the reliability of the MFE per base�
For all bases that have an S value between � and ������ ����� and ������ ����� and
����� etc�� the fraction of bases for which the MFE corresponds to the comparative
structure is counted� The �gure hence gives a probability that for a base with
the given S value the MFE corresponds to the comparative structure� For all
the classes we observe a negative relation between the S value of a base and the
reliability of the MFE for that base� In other words� as there is� based on the
thermodynamic model� less uncertainty of the base�pairing behavior of a base� the
correspondence between the MFE and the comparative structure for that base
increases� In both the ��S	like� and the ��S	like� rRNAs the prokaryotes score
higher than the other phylogenetic classes� For ��S	like� rRNA the di
erences
between the prokaryotes and the other classes are smaller than for the ��S	like�
RNAs� ��



that describes the relation between the S value and the fraction of correctly
predicted bases is virtually identical for the Archaea and the Bacteria� but is
lower in the chloroplasts and mitochondria� and lowest in the Eukarya� Note
that relative to Figure �� the Eukarya and the mitochondria have switched places�
The Eukaryotic ��S rRNA sequences have lower S values than the mitochondrial
��S�like sequences� however the MFE for a base with a low S value is on average
more reliable in a mitochondrial sequence than in a Eukaryotic sequence� For
the ��S	like� rRNAs we again observe that the curve is highest in Archaea and
Bacteria� The di
erences with the other classes are however smaller than for the
��S	like� rRNA sequences�

Competition between non�canonical and canonical base pairs

type of base pair� non�canonical canonical single stranded
in comp� struct�

Archaea ����� ��
�� �����
Bacteria ����� ����� �����
chloroplasts ���
� ����� �����
mitochondria ����� ����
 �����
Eukarya ����� ���
� �����

Probability of being canonically base�paired in the thermodynamic model

Table �� Average probabilities of canonical base�paring in the thermodynamic
model for bases that in the comparative structure form either non�canonical base�
pairs� canonical base�pairs 	Watson�Crick � G�U� or single stranded bases� The
standard deviations are about ���� for the non�canonical base�pairs� ���� for the
canonical base pairs and ���� for the single stranded bases� irrespective of the
taxonomic class�

The thermodynamic model for secondary structure prediction considers only
Watson�Crick and G�U base�pairs� We studied to what extent the non�canonical
	excluding G�U� base pairs that have been derived by the comparative analysis
compete with canonical base�pairs� In other words� do they tend to occur at po�
sitions that would otherwise be paired or single stranded � We divided the bases
in three groups according to their base�pairing in the comparative structures�
those that form a non�canonical base�pair 	excluding G�U�� those that are single
stranded and those that form a canonical base�pair 	Watson�Crick � G�U�� Per
group we score the average probability that the bases form a canonical base�pair
according to the thermodynamic model� Table � shows that the non�canonical
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base�pairs in the comparative structure occur at positions that have a relatively
low probability of forming a canonical base�pair in the thermodynamic model�
The probabilities are comparable to the base�pairing probabilities of the posi�
tions that are single stranded in the comparative structure� In the Archaea� the
base�pairing probability is even lower than for the single stranded bases� Within
ribosomal RNAs there appears hence relatively little competition in the thermo�
dynamic model from canonical base�pairs interactions at the positions where we
observe non�canonical base�pairs in the comparative structure�

Discussion

We have shown that the local dominance of a single structure within the Boltz�
mann distribution of alternative secondary structures is strongly correlated with
the reliability of the minimum free energy structure� Bases whose base�pairing
probability distribution is dominated by a single base pair or by the absence of
base pairing are better predicted than the ones that have many alternative states�
This pattern is observed in ��S and ��S�like rRNA and ��S and ��S�like rRNA in
Archaea� Bacteria� chloroplasts mitochondria and Eukarya� These results are in
accordance with the data on ��S rRNA of E�coli by Zuker and Jacobson 	�

�� �
They showed that the parts of the sequence for which a relatively few alternative
structures exist within a certain energy range are those that have a high probabil�
ity of being predicted correctly by minimum free energy structure� Archaea and
Bacteria that live at high temperatures have� calculated at ��� C� a more uniquely
determined secondary structure than bases of Archaea and Bacteria that live at
low temperatures� This appears to re�ect an adaptation to their environmental
temperature� as the RNA secondary structure for any given sequence becomes
less uniquely determined with rising temperature� An interesting observation
about hyper�thermophilic Archaea and Bacteria is that their ribosomal RNAs
evolve at a relatively low rate 	Woese� �
���� An explanation for this is that the
thermodynamic constraints imposed on their structure� as re�ected in the low S
values of their base pair probability distributions� reduce the fraction of neutral
mutants� The fact that the S values of the 	hyper�thermophiles are signi�cantly
lower than those of random sequences and more extreme than the S values of the
mesophiles and psychrophiles supports this hypothesis� Environmental temper�
ature is but one factor that a
ects RNA folding� low PH values and high salt
concentrations at which some of the Archaea live stabilize base�pairing� They
reduce the repulsion between the negatively charged backbones by protonation
of the phosphates 	at Ph � �� 	Saenger� �
���� and by �shielding� the negative
charges respectively�

The second factor that a
ects the reliability of the minimum free energy
structure is the applicability of the thermodynamic model for RNA folding it�

��



self� The model that is used here for calculating the RNA secondary structure is
based on the following principles� the RNA structure is in thermodynamic equi�
librium� its free energy is calculated by adding up local contributions� a limited
set of experimentally determined parameters of these contributions are included�
and interactions other than secondary structure ones are not considered� The
interaction with other molecules like proteins 	Powers � Noller� �

�� and small
nucleolar RNAs 	Maxwell � Fournier� �

��� or kinetic e
ects in the folding of
RNAs 	Gultyaev et al�� �

�� can interfere with the formation of the structure
as predicted by the model� By separating two factors that a
ect reliability of the
minimum free energy folding� the �rst of which is intrinsic to the thermodynamic
model itself� our analysis allows for a quanti�cation of e
ects that interfere with
the thermodynamic model�

Non�canonical base�pairs 	non Watson�Crick and non G�U� are not part of
the thermodynamic model of secondary structure prediction� the assumption is
that they are added to the core structure that is formed by the secondary struc�
ture sensu stricto� We observed that there is indeed relatively little competition
at the positions of the non�canonical base�pairs from canonical base�pairing� The
e
ect is strongest in the Archaea and becomes less in respectively Bacteria� chloro�
plasts� mitochondria and Eukarya� The variation in this e
ect points to di
erent
strengths of selection to prevent canonical base�pair interactions at positions were
non�canonical base�pairs occur� Since all the ribosomal RNAs are the product
of a selection process on secondary structure� we can� however� from these data
not conclude to what extent non�canonical base�pairs interfere with secondary
structure formation in random sequences�

We have distinguished two factors to explain the variation that was observed
in the reliability of the folding of ribosomal RNAs 	Konings � Gutell� �

�� Fields
� Gutell� �

��� the dominance within the Boltzmann distribution and the ap�
plicability of the thermodynamic folding model� Whereas the higher reliability of
the MFEs of Archaea than those of Bacteria is largely due to the better de�ned
secondary structures in Archaea� The lower reliability of the folding in chloro�
plasts� mitochondria and Eukarya is also due to the fact that the thermodynamic
model of secondary structure prediction applies less to these RNAs�

We do fully acknowledge that the base�pairing probability distribution ap�
proach represents an entirely di
erent view on RNA structure than does the
comparative sequence analysis approach� The base�pairing probability distribu�
tion approach is based on statistical mechanics� and does in principle not predict
a single structure� The uncertainty it represents in terms of a probability dis�
tribution of structures instead of a single structure is assumed to be �real� in
thermodynamic equilibrium� Adaptation to this uncertainty by evolving sec�
ondary structures that are relatively dominant in their Boltzmann distribution
of alternative structures has been shown for tRNAs 	Marliere� �
��� Higgs� �

��

��



and for the functional secondary structures in HIV�� 	Huynen et al�� �

��� Here
we have shown that this type of adaptation can also compensate the increase of
uncertainty that is caused by high environmental temperatures�
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Small subunit rRNA 	��s and ��s like��
Archaea

Haloarcula marismortui ���� ����
Haloferax volcanii ���� ����
Methanobacterium formicicum ���� ����
Methanococcus vannielli ���� ����
Sulfolobus solfataricus ���� ����
Thermoplasma acidophilum ���� ����
Thermococcus celer ���� ����
Thermoproteus tenax ���� ���


Bacteria

Arthrobacter globiformis ���� ����
Agrobacterium tumefaciens ���� ����
Bacillus subtilis ���� ����
Bacteroides fragilis ���� ����
Borrelia burgdorferi ���� ����
Chlamydia psittaci ���
 ����
Desulfovibrio desulfuricans ���� ����
Escherichia coli �
�� ����
Frankia alni ���
 ����
Mycoplasma gallisepticum ���� ����
Mycoplasma hyopneumoniae ���� ����
Pseudomonas testosteroni ���
 ����
Synechococcus sp���	
 ���� ����
Thermotoga maritima ���
 ����
Thermus thermophilus ���
 ����

chloroplasts

Astasia longa ���� ����
Chlamydomonas reinhardtii ���
 ��
�
Chlorella vulgaris ���� ����
Cryptomonas sp� ���� ����
Cyanidium caldarium ���
 ����
Euglena gracilis �
�� ����
Marchantia polymorpha ���� ����
Nicotiana tabacum ���� ����
Olisthodiscus luteus ���� ����
Palmaria palmata ���� ����

��



Zea mays ���� ����

mitochondria

Ascaris suum ���
 ����
Aspergillus nidulans ���� ����
Bos taurus ���� ���

Caenorhabditis elegans ���� ����
Saccharomyces cerevisiae ���� ����
Zea mays ���� ����

Eukarya

Babesia bigemina ���� ����
Cryptococcus neoformans ���� ����
Encephalitozoon cuniculi ���� ��
�
Giardia ardeae ���� ����
Giardia intestinalis ���� ����
Giardia muris ���� ����
Gracilariopsis sp� ���� ����
Hexamita sp� �
�� ����
Homo sapiens ���� ����
Mus musculus ���� ����
Placopecten magellanicus ���� ��
�
Saccharomyces cerevisiae ���� ��
�
Tritrichomonas foetus �
�� ����
Vairimorpha necatrix ���� ����
Xenopus laevis ���� ����

Large subunit rRNA 	��s and ��s like�
Archaea

Halobacterium marismortui ���� ����
Halococcus morrhuae ���� ����
Methanobacterium thermoautotrophicum ���� ����
Methanococcus vannielii ���� ����
Sulfolobus solfatiricus ���� ����
Thermococcus celer ���� ����
Thermoproteus tenax �
�� ����
Thermoplasma acidophilum ���� ����

Bacteria

�




Bacillus subtilis ���� ����
Borrelia burgdorferi ���� ��
�
Campylobacter coli ���
 ����
Escherichia coli ���� ����
Frankia alni ���� ����
Mycobacterium leprae ���� ����
Pseudomonas aeruginosa �
�� ���

Pseudomonas cepacia ���� ����
Rhodobacter sphaeroides �
�
 ����
Streptomyces ambofaciens ���
 ����
Synechococcus sp���	
 ���� ��
�
Thermotoga maritima ���� ����
Thermus thermophilus ���� ����

chloroplasts

Alnus incana ���� ����
Astasia longa ���� ����
Chlamydomonas eugametos ���
 ����
Chlamydomonas reinhardtii �
�� ��
�
Chlorella ellipsoidea �
�� ����
Euglena gracilis �
�� ����
Marchantia polymorpha ���� ���

Nicotiana tabacum ���� ����
Palmaria palmata ���� ����
Zea mays ���� ����

mitochondria

Acanthamoeba castellanii ���� ����
Caenorhabditis elegans ���� ����
Chondrus crispus ���� ����
Crossostoma lacustre ���� ��
�
Dictyostelium discoideum ���� ����
Drosophila melanogaster ���
 ����
Gallus gallus ���� ����
Homo sapiens ���
 ����
Marchantia polymorpha ���� ����
Paracentrotus lividus ���� ����
Paramecium tetraurelia ���
 ����
Prototheca wickerhamii �
�� ����

��



Saccharomyces cerevisiae ���� ����
Schizosaccharomyces pombe ���� ���

Tetrahymena pyriformis ���
 ����
Xenopus laevis ���� ����
Zea mays ���� ��
�

Eukarya

Arabidopsis thaliana ���
 ��
�
Caenorhabditis elegans ���� ���

Chlorella ellipsoidea ���� ����
Cryptococcus neoformans ���� ����
Giardia intestinalis ���� ���

Giardia muris ���� ����
Herdmania momus ���� ��
�
Oryza sativa �
�� ����
Pneumocystis carinii ���
 ����
Physarum polycephalum ���� ��
�
Phytophthora megasperma ���
 ����
Prorocentrum micans ���� ���

Saccharomyces cerevisiae ���� ����
Tetrahymena thermophila ���� ����
Toxoplasma gondii ���� ��
�

Table�� The species� their percentage correctly predicted bases and their average

S values� A base is considered to be predicted correctly in the MFE if it has the same

paired to the same base as in the comparative structure� if it is single stranded both

in the MFE and in the comparative structure and if it is single stranded in the MFE

and non�canonically �non A�U or G�C or G�U� paired in the comparative structure�
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