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Abstract

In many complex systems control situations� searching for solutions or
alternatives is involved� Searching for solutions can be modeled by a search
on a �tness landscape� Knowing the structure of the underlying landscape can
help in explaining or predicting aspects of an actual search on it� and thus in
controlling the system that is living on the landscape�

This paper presents results on characterizing the structure of the �tness
landscape that results from searching for a cellular automaton� a simple math�
ematical model of a complex system� that can perform a certain non�trivial
computational task �global synchronization�� The structure of this landscape
turns out to be quite di�erent from the more standard �tness landscapes that
have been looked at so far� It is furthermore shown that the characterization
of this structure can explain certain phenomena that are observed in an actual
search on this landscape�

� Introduction

Controlling a complex nonlinear system requires a great deal of knowledge about
how the system works and� more importantly� how it responds to adjustments�
Control often involves a search among several alternative adjustments to a system�
looking for the one that results in the desired �change in� behavior of the system�
But for most complex nonlinear systems it is impossible or too costly to approach
this search analytically� and much of the search relies on trial and error� It is
therefore desired to have some knowledge about the structure of the underlying
search space� in order to �guide� the search�

Using a metaphor from biology� looking for alternatives in a search space can be
modeled by a search on a �tness landscape� A �tness landscape is a usually high
dimensional space where each point represents� for example� a possible solution

	



to a problem� or a possible internal state of a system� Furthermore� points in
the landscape are connected to each other� and the connections� usually called the
neighborhood relation� are determined by the move operator that is used to search
the space of alternatives� Two points in the landscape are connected if one can
be reached from the other by applying the move operator once� Lastly� each point
is assigned a �tness� which is a measure of how good a solution� represented by
that point� for the given problem it is� This representation space� together with the
neighborhood relation and the assigned �tness values� can now be envisioned as a
more or less mountainous landscape �the height of a point is given by its �tness
value�� where the highest peaks denote the best solutions� A search on a �tness
landscape looks for the highest regions in the landscape� or in other words tries to
�walk uphill��

To understand a complex nonlinear system that is �living� on a �tness landscape�
it is very useful to have some insight in the structure of that landscape� because it
can re
ect how easy or di�cult it is for a search algorithm to �nd good solutions
�MWS
	� MFH
��� Usually the landscape is too large� i�e�� contains too many
points� to exhaustively search it� However� there are some general statistics that can
be derived from the landscape which can help in building a global characterization
of the structure of the landscape� One could� for example� look at the height
and location distributions of peaks in the landscape� the average number of steps
necessary to reach a peak� or the correlation structure of the landscape� by sampling
points in the landscape�

So one way of characterizing a complex nonlinear system for purposes of control
is to gather statistics that give insight in the structure of the �tness landscape on
which the system is living� Knowledge about this structure can help in searching
for good solutions or alternatives� or in explaining the behavior of the system or
the search process�

This paper presents some results of characterizing the structure of a �tness
landscape that results from searching for a cellular automaton �a simple model of
complex nonlinear systems� that can perform a certain non�trivial computational
task� called synchronization �see �DCMH
���� The next section explains the con�
cept and usefulness of �tness landscapes in more detail� Section � explains what
cellular automata �CAs� are� and explains the speci�c task that the CA is required
to perform� The section following that presents the results of characterizing the
structure of the resulting �tness landscape� Section � then shows how this charac�
terization can be used to explain or predict certain aspects of an actual search on
the landscape�
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� Fitness Landscapes

The notion of a �tness landscape comes from biology ��rst introduced in �Wri�����
where it is used as a framework for thinking about evolution� Biological organisms
can be represented by their genotype� which is the genetic encoding of the organ�
ism� or their phenotype� which is the actual form and behavior of the organism�
The abstract notion of �tness can be assigned to each phenotype� which re
ects
its ability to survive and reproduce� Evolution can now be viewed as a process
that searches a �tness landscape of possible genotypes� looking for genotypes that
represent �encode� highly �t phenotypes�

This �tness landscape paradigm can be used for search in general� Given a
problem and a set of possible solutions to that problem� the �rst step is to �nd an
encoding� or representation� for the possible solutions� In the traveling salesperson
problem� for example� the goal is to �nd the shortest possible tour along a number
of cities� visiting each city exactly once� So the set of possible solutions is the set of
all possible tours along those cities� An encoding for these possible solutions� given
a numbering of the cities� could be a list of integers� denoting the order in which to
visit the cities� So if there are N cities� numbered 	 to N � the encoding consists of
all the possible permutations of f	� � � � � Ng� thus creating a representation space�

The next thing that is needed is a neighborhood relation� This relation indicates
which points in the representation space are connected to each other �e�ectively
imposing a graph structure on the set of points�� This neighborhood relation is
usually de�ned by the move operator �or combination of move operators� that is
used to search the representation space� In the traveling salesperson example� a
move operator could for example be swapping two cities in the current order �per�
mutation�� By applying this move operator� a move is made from one point in the
representation space to another� Each pair of points in the representation space
that can be reached from one another by applying the move operator exactly once�
is thus connected� The representation space is now a graph that can be traversed
by applying the move operator repeatedly�

Finally� a �tness function is needed� This function takes as input an encoding
for a possible solution to the given problem� converts the encoding to the actual
solution it represents� and returns a value that denotes how good this solution is
for the given problem� The better a solution� the higher the �tness value� For the
traveling salesperson problem� the �tness function will take as input an ordering� or
permutation� of the cities and calculate the length of the tour when the cities are
visited in that particular order� Since a better solution� in this case� is a shorter tour
length� the �tness function could for example return the inverse of the tour length�
so that better solutions have higher �tness values� Using this �tness function� a
�tness can be assigned to each point in the representation space�

Taken together � the representation space� the neighborhood relation� and the
�tness function � they de�ne a �tness landscape� Graphically� this can be imagined
as a space of connected points� where each point has a height according to its �tness
value� giving rise to the image of a more or less mountainous landscape where the
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peaks denote good solutions to the given problem� When searching on a �tness
landscape� the goal is usually to �nd the highest peak�s��

Summarizing� a �tness landscape is de�ned by three things�

	� A representation space �i�e�� encodings for possible solutions��

�� A neighborhood relation that de�nes which points are connected in the rep�
resentation space�

�� A �tness function that assigns a �tness value to each point in the representa�
tion space�

There are several characteristics that make up the structure of a �tness land�
scape� For example� one might be interested in the number of local optima in the
landscape� A local optimum is de�ned as a point in the landscape that has equal
or higher �tness than all of its neighbors �i�e�� the points it is directly connected
to�� On a landscape with a lot of local optima� there is a danger that a search will
get stuck in a local optimum that is �much� less �t than the actual global optimum
�the point with the highest �tness in the landscape�� Other characteristics are the
distribution of the �relative� heights and locations of local optima� or the number of
steps �applications of the move operator� it takes to reach a local optimum starting
at a random point in the landscape�

Another important characteristic of a �tness landscape is its �ruggedness�� This
means the �average� �tness di�erences between neighboring points� If the �tness
di�erence between neighboring points is very small� the landscape is very smooth
and there is a high correlation between the �tness values of neighboring points� If
the �tness di�erence is very large� the landscape is very rugged and there is very
little correlation� So the more correlated the landscape is� the �further away one
can look�� still having some information about the �tness values of distant points�
Roughly� the correlation structure of a landscape indicates how easy it is to keep
walking uphill�

The landscape metaphor is useful in several ways� First of all� it gives rise to
intuitively simple images like hills� valleys and peaks� that can help in understanding
search processes in general� Secondly� the de�nition of a �tness landscape �which
is basically a labeled graph� lends itself to rigorous mathematical analysis �Jon
��
Sta
��� Finally� as was mentioned in the introduction� the structure of a �tness
landscape can re
ect how easy or di�cult it is for a search algorithm to �nd good
solutions �MWS
	� MFH
���

The next section introduces a �tness landscape that results from searching
through a space of cellular automaton rules for a rule that is capable of performing
a certain computational task� called synchronization�
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� Cellular Automata and the Synchronization Task

Cellular automata �CAs� �TM��� Gut
�� Wol
�� are a class of simple mathematical
models that can give rise to complicated behavior� Therefore� they are often used
as simple models of complex �nonlinear� systems� In the simplest case� a CA is
a one�dimensional lattice of length L of identical cells� each of which can be in
one of two possible states �for example black or white�� The collection of all these
cells and their particular values is called a con�guration� The lattice is updated in
discrete time steps� where at each time step all cells simultaneously update their
state� There is a deterministic update rule that each cell consults� which takes as
input the current state of a cell and that of its direct neighbors� and returns the
new state of the cell� The number of neighbors� r� to the left and to the right of a
cell that are used in the update rule is called the radius� Usually� the lattice has
periodic boundary conditions� which means that the lattice is �wrapped around� at
the ends� i�e�� cell 	 and cell L are each others neighbors�

The update rule is simply a lookup table which gives the new state for each
of the ��r�� possible neighborhood con�gurations a cell can be in� Since there
are ��r�� entries in the lookup table� and each entry can have two possible values
for the new state� there is a total of ��

�r��

possible update rules� Starting with a
random initial con�guration � randomly assigning black or white to each cell in the
lattice �� iterating the lattice using one of the possible update rules� and plotting
the con�gurations over time� gives rise to a space�time diagram which can display
�depending on the speci�c update rule� complicated patterns�

It is even possible to perform certain computations with CAs� One way of having
a CA perform a computation is to encode an input in an initial con�guration �IC��
then let the CA iterate for a certain number of time steps� transforming the input
to some output� and read back� or decode� the output from the �nal con�guration�
In �DCMH
�� a space of CA update rules is searched to �nd a rule that is capable
of doing a non�trivial computation called synchronization� the space�time behavior
of the CA has to settle down to a synchronized periodic oscillation between an all
white con�guration and an all black con�guration� The input is just a random
initial con�guration� and the CA is given a certain number of time steps to reach
the globally synchronized state� which can be considered as the desired output� An
example is given in Figure 	 �taken from �DCMH
���� where global synchronization
is reached roughly at time step 	��� This task is non�trivial for a CA� since it
requires global coordination between all the cells� while each cell can only interact
locally with its direct neighbors� For a detailed description of how the CA actually
does the synchronization task� see �DCMH
�� HCM
���

Looking for such a CA rule can� of course� also be modeled by searching a �tness
landscape� In �DCMH
�� CAs with a radius r � � were used� so there is a total of

��
�����

� ���� possible update rules � too many to do an exhaustive search� These
CA update rules can be represented as bit strings of length 	�� �one bit for each
lookup table entry�� so the representation space consists of ���� bit strings each of
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Figure 	� A space�time diagram� started from a random initial con�guration of
black and white cells� of a particular �r � �� CA that solves the synchronization
task� Global synchronization is reached roughly at time step 	��� After �DCMH
���

length 	��� In this representation a value of � denotes white and a 	 denotes black�
The �rst bit in the string gives the new state for the neighborhood �������� the
second bit gives the new state for the neighborhood ������	� the next for �����	��
and so on until the last bit for the neighborhood 							�

The neighborhood relation of the landscape depends of course on the search
method used� In �DCMH
�� a genetic algorithm was used� which is a search algo�
rithm modeled after natural evolution� using genetic operators called crossover and
mutation� Here� we will look only at point�mutation� i�e� bit strings that di�er only
in the value of one bit are neighbors� So the �tness landscape is simply the boolean
hypercube of dimension 	��� The �tness of a particular CA rule is de�ned as the
fraction of initial con�gurations out of a set of 	�� randomly generated ICs on which
it displays the desired synchronized behavior within a maximum number of time
steps M � where M is a function of the lattice size L� So the �tness is normalized
between � and 	� Here� as in �DCMH
��� L � 	�
 and M � ���� and the ICs are
randomly generated with a uniform distribution over the density of black cells�

So the problem of �nding a CA that can solve the synchronization task can
be modeled by a search on a particular �tness landscape� This landscape will be
called the �synchronizing�CA landscape�� The next section gives the results of
characterizing the structure of this landscape�

�



� The Structure of the Synchronizing�CA Land�

scape

To gather statistics for characterizing the structure of the synchronizing�CA land�
scape 	���� uphill walks on this landscape are performed� The algorithm for an
uphill walk is as follows�

	� Start at a random point in the landscape and calculate its �tness �by iterating
the CA that this point represents on 	�� random ICs��

�� Calculate the �tness of all neighbors� or one�point mutants� of the current
point� and record the ones that are �tter than the current point�

�� If there are no �tter neighbors then save the current point� which is a local
optimum� and stop� Otherwise� go to ��

�� Select one of the �tter neighbors at random and make that one the current
point�

�� Go to step ��

Whenever the �tness of a point is calculated� a new set of 	�� random ICs is
created� with a uniform distribution over the density of 	�s in the IC� The same
point can thus have a slightly di�erent �tness value each time its �tness is calculated�
Besides saving the local optima� during the walks several statistics like the number
of �tter neighbors of the current point� the average �tness of those �tter neighbors�
and the number of steps it took to reach the local optimum are saved� Together�
these statistics give a nice characterization of the structure of the �tness landscape
�Kau
���

Figure � shows a histogram of the �tness values of local optima� It shows that
there are very many low��tness �lower than ��	� local optima� almost no local optima
with a �tness between ��	 and ���� and a small number of higher��tness �higher than
���� local optima� Figure � shows the same plot with a much smaller y�scale to show
the distribution of higher��tness local optima more clearly�

Figure � shows the walk lengths� i�e�� number of uphill steps� to the local optima
against the �tness of the local optima� Clearly� low��tness local optima are reached
in a small number of steps� as shown by the cluster of points in the lower�left
corner� Furthermore� there seems to be a clear correlation between the height of a
low��tness local optimum and the number of steps it takes to reach it� However�
higher��tness local optima can be reached in any number of steps ranging �roughly�
from � to ��� as shown by the cloud of points at the right� There seems to be no
correlation between the height of a higher��tness local optimum and the number of
steps it takes to reach it�

Figure � shows the number of �tter neighbors of a point along an uphill walk�
against the �tness of that point� The plot shows all the points that were encountered
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during all the 	���� uphill walks� Points in the landscape with low �tness can have
a number of �tter neighbors ranging �roughly� from � to 	�� �remember that there
are 	�� neighbors in total for each point�� This range becomes gradually smaller
for increasing �tness � the higher the �tness of a point is� the smaller the number
of �tter neighbors� on average� it will have� Note also that the density of points for
smaller numbers of �tter neighbors is higher� having just a few �tter neighbors is
more likely than having many �tter neighbors�

Figure � shows the average �tness of the �tter neighbors of a point along an
uphill walk� against the �tness of that point� Again� all the points encountered
during all the uphill walks are plotted� Similarly to the number of �tter neighbors�
the range of the average �tness of �tter neighbors is wider for low��tness points and
becomes narrower for increasing �tness�

However� the result of Figure � does not necessarily mean that during a partic�
ular uphill walk the number of �tter neighbors decreases gradually� Figure � shows
the number of �tter neighbors of the points along the longest uphill walk that was
found �which reached a �nal �tness of ���� in �� steps�� As can be seen� at any
step the number of �tter neighbors can be arbitrary� but of course within the range
shown in Figure �� There is no gradual decrease in the number of �tter neighbors�
and no apparent correlation between the number of steps and the number of �tter
neighbors�

Figure � shows the distribution of the locations of the local optima in the land�
scape� The �tness of a local optimum is plotted against its Hamming distance
from the best CA rule� �sync� that was found for the synchronization task �see
�DCMH
���� The Hamming distance between two bit strings is the number of bits
in which the two strings di�er in value� In other words� if the Hamming distance
between two bit strings is d� it will take at least d bit 
ips� or point�mutations�
to go from one point to the other� As the plot shows� the distances of the local
optima from �sync are uniformly distributed within a certain range� and there is no
correlation between the location of a local optimum and its height� The plot where
the �tness of the local optima is plotted against their Hamming distance from the
best local optimum found among all the uphill walks� looks similar�

As mentioned in section � another important part of the characterization of the
structure of a �tness landscape is its correlation structure� Results on characterizing
the correlation structure of the synchronizing�CA landscape are presented in another
paper �Hor
��� The next section shows how the structure of a �tness landscape can
explain certain aspects of an actual search on the landscape�
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Figure �� The number of local optima with a particular �tness�

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy

Fitness of local optimum

Figure �� The number of local optima with a particular �tness with a smaller y�scale
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Figure �� The average �tness of the �tter neighbors of a point in the landscape
against the �tness of that point�
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Figure �� The �tness of the local optima against their Hamming distance from
�sync� the best rule found for the synchronization task�

� Landscape Structure and Search

What can the structure of a �tness landscape tell us about search on that landscape�
The results presented in the previous section show that for the synchronizing�CA
landscape there are many low��tness local optima� a few higher��tness local optima�
and basically nothing in between �Figures � and ��� This means that once a search
algorithm is able to escape from the low��tness local optima� it can not get stuck on
intermediate��tness local optima� Figure 
 shows �ve di�erent runs of applying a
genetic algorithm �GA� to the problem of �nding a CA rule for the synchronization
task� The best �tness value in each generation is plotted over time� The particular
GA that is used here uses only point�mutation �at each time step exactly one random
bit is 
ipped in each string�� and no crossover� This way� the search results can be
related to the landscape structure� which is also derived by using point�mutation
only�

As the plot shows� in all �ve runs the GA indeed jumps from low��tness points
�less than ��	� to higher��tness points �larger than ���� in just a few generations�
and then gradually climbs toward a perfect��tness of 	��� The time to wait before
this jump occurs is di�erent for the di�erent runs� but once the GA is able to
escape the region of low��tness peaks� it can not get stuck on intermediate��tness
local optima� and almost immediately jumps to regions of higher��tness�

Looking closer at some of the local optima� it turns out that the low��tness
local optima are CA rules that do not show any interesting behavior �at least not
in terms of the synchronization task�� but happen to have the �rst and last bit in
the bit string representing the CA lookup table� set to the correct value of 	 and
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Figure 
� Five di�erent runs of a genetic algorithm� using point�mutation and
no crossover� applied to the synchronizing�CA problem� The best �tness in each
generation is plotted over time�

� respectively� Note that this is necessary for global synchronization� because an
all ��s neighborhood �represented by the �rst bit in the string� has to go to a 	�
and an all 	�s neighborhood �represented by the last bit� has to go a �� Since the
initial con�gurations are randomly distributed with a uniform distribution over the
density of 	�s� once in a while there is an IC with all ��s �white cells� or an IC with all
	�s �black cells�� on which those particular CA rules will synchronize immediately�
If this happens twice for example �in the set of 	�� ICs�� then the �tness of such a
CA rule will be �����

The higher��tness local optima� however� are actually applying a certain compli�
cated strategy to solve the synchronization task �see �DCMH
�� HCM
�� for more
details�� They are not just relying on a particular advantageous initial con�gura�
tion� but are more robust� and solve the task roughly �� to 
� percent of the time�
Figure 	 gives an example of a complicated strategy that solves the synchronization
task on random initial con�gurations�

As it turns out� the GA �rst has to �nd the correct values for the �rst and the
last bit in the bit string� and once it has found those values� it can start to try to
improve the �tness values by looking for CA rules that actually apply some sort
of strategy� This is re
ected in Figure 
� where during the �rst generations the
GA is more or less looking around in the region of the low��tness local optima to
get the values of the �rst and last bit set correctly in most of the members in the
population� Once a small improvement on this is found� the GA quickly jumps up
to higher �tness local optima� because it can not get stuck on intermediate��tness
local optima�
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Some other conclusions can be drawn from Figures � and �� points in the land�
scape with higher �tness values will� on average� have a smaller number of �tter
neighbors� with a smaller average increase in �tness� than points in the landscape
with lower �tness values� In other words� when the search is still in a region of
low �tness� there are more opportunities to �nd �tter neighbors� and the increase
in �tness will on average be larger� then when the search is already in regions of
higher �tness� This� again� is re
ected in Figure 
� As soon as the GA is able to
escape the low��tness local optima� large increases in �tness are made very rapidly�
but later on the increases in �tness become smaller and smaller� and it takes longer
before a new �tness increase is found�

However� as Figure � shows� the number of �tter neighbors along a particular
walk can 
uctuate a lot� and does not always decrease gradually� This could explain
why in di�erent runs of the GA there is a di�erence in the waiting time before the
jump towards higher��tness points occurs� and why the duration of this jump is
also di�erent�

Finally� from Figure � it can be concluded that local optima are randomly dis�
tributed throughout the landscape� They are not clustered together� and the loca�
tion of one local optimum does not necessarily give information about the location
of other local optima� However� this means that it does not matter very much where
a search is started� because there will always be local optima relatively nearby� so
only part of the landscape needs to be searched to �nd high peaks� As Figure 

shows� in all �ve runs the GA was able to �nd high��tness local optima�

� Discussion

The goal of this paper is twofold� First� it presents results on characterizing the
structure of a �tness landscape that results from searching for a complex system
�a CA� that can perform a certain computational task called synchronization� As
it turns out� the structure of this synchronizing�CA landscape is quite di�erent
from more �standard� �tness landscapes that have been looked at so far� like
NK�landscapes �Kau
�� or some combinatorial optimization problems landscapes
�Kra
�� Pre�� The synchronizing�CA landscape seems to be less regular� or less
�well�behaved�� This makes the landscape harder to understand� but also more
interesting� at least from a complex systems point of view�

Second� it is shown that this characterization of the structure of the landscape
can help in explaining certain aspects of an actual search on that landscape� Char�
acterizing the structure of the �tness landscape a complex system is living on can
thus help in understanding that system� or make predictions about a search on the
landscape� Therefore� it can also help in the control of complex non�linear systems�
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