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Abstract

This paper summarizes some of the problems associated with the generation of
higher order emergent structures in formal dynamical systerns as well as some of
the formal properties of dynamical systems capable of generating higher order

structures.



1 Molecular Self-Assembly

In biclogical systems, higher order hyperstructures occur both in an intuitive
and a formal sense: monomers, polymers, membranes, organelles, cells, tissues,
organs, etc. constitute an observable hierarchy, apparently generated by the
underlying biomolecular process. However, in models and simulations of these
systems, it has turned out to be quite difficult to produce higher order emergent.
structures from first principles.

The first problem is to agree on what a higher order structure is. An emer-
gent structure can be defined through an introduction of an ebservational func-
tion [1]. If a property can be observed in the dynamics, but not at the level of
the fundamental first order interacting structures, we define it to be emergent.
it is well known that second order structures occur relatively easy in simulation,
so the problem is how to proceed to third and higher order without external
interference [3]. A third order structure is defined through the interaction of
second order structures forming a new observable not found at the lower levels.

We can discuss these problems in the light of a Lattice Gas Automata [5] style
discrete field antomata, a Lattice Polymer - or Molecular - Automata (LPM,
LMA) [9, 6] for molecular self-assembly where we can demonstrate the genera-
tion of higher order structures from first principles [3]. These formal systems are
interesting in their own right, since this level of description allows the generation
of entropic and enthalpic flows in a microcanonical, molecular ensemble bringing
insight to entropy-driven processes in molecular many-particle systems. Struc-
tural features of a polar solvent can be generated together with cluster-formation
of hydrophobic monomers and polymers in a polar environment. Polymerization
processes, and the self-assembly of micelle-like struzctures of lipid polymers can
also be followed. Membrane stability, microtubule assembly/disassembly and
cytoskeletal re-organization can also be generated. However, the central issue
here is dynamics and not molecular self-assembly. For a detailed discussion of
the physico-chemical properties of these self-organizing processes we refer to [6].
For an alternative approach to the dynamics of self-organization we refer to
[4, 8]. See also [2].

The cellular automata we use to describe the dynamics of these simple molec-
ular seif-assembly systems can be formulated as interacting objects of the form

Si(zi, vi, 21, fij 1) (1)

where 5; is the ith molecule, x; its position on a 2-D lattice, y; its current
state: velocity, kind of molecule, and bond directions; z; its neighborhood,
incoming force particles from neighboring molecules 7; and f;;, the object-object
interaction rules

Ffis(i(®), wi(8), z:(8)) — (@:(t + 1), st + 1)), (2)

which change the location and the internal state of current object depending on
the way the object updates are scheduled (which e.g. can be random or parallel}.



For a detailed description of the rules in (1) and (2), their assumptions, and
the LMA dynamics, we refer to [9, 6, 3]. For an alternative cellular antomata
approach we refer to [7].

If we define monomers to be first order structures, then polymers will con-
stitute second order structures. Third order structures will then be given by
micelles. Polymers carry second order emergent properties such as elasticity;
micelles and membranes carry third order emergent properties such as perme-
ability - and an inside and an outside. Defining a dynamical system as an
LMA, it becomes possible to generate higher order emergent structures from
first principles as can be seen in figure 1. It should be noted that this particular
process is chosen, because of its conceptual clarity and not because it models
any particular biomolecular process.

It is clear from the observations we have made of the dynamics of the discrete
field automata systems, that their ability to produce emergent structures is
highly dependent on the degree of detail - or fidelity - of the objects in (1).
As more and more interactions (f;;) - and more and more different molecules
and molecular states (y;) - are taken into account, the more complex emergent
structures the lattice automata systems are able to produce.

For example allowing only a simple molecule-molecule interaction without
any excluded volume, enables us to define Lattice Gases [5] which can generate
a variety of macroscopic fluid dynamics phenomena. By defining an excluded
volume for the monomers together with binding and scheduling information
to each of the molecules, it becomes possible to generate polymer dynamics.
These are examples of second order emergent phenomena, as we have mentioned
earlier. If binding information is present and the initial configuration is a random
configuration of polymers with hydrophilic heads and hydrophobic tails the
formation of micelle-like aggregates becomes possible. However, in a direct
way the polymers can be generated by the dynamics if we allow an interaction
which is specific for a polymerization process. If bond information together
with polymerization interactions as well as hydrophobic/hydrophilic molecules
all are defined, it becomes possible to generate micelle-like polymer aggregates
from an initial condition of random monomers as seen in figure 1. Intermediate
configurations of the dynamics will then be dominated by the newly polymerized
hydrophobic/hydrophilic polymers. Thus, it is possible to produce third order
structures from first order structures.

Another way of saying this, is that a more detailed description of the Physics
is necessary to allow the formal system to produce higher order structures !.
Weaker effects also have to be taken into consideration if more complex struc-
tures have to be explained.

Since the very beginning of the study of Complex Systems the dogma de-
scribed in figure 2 has been dominating.

1We use Physics to denote principles of Nature independent of our description or knowledge
of it. We use physics to denote our formal understanding and models of these principles.
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Figure 1; Generation of third level structures in the lattice automala system.
(monomers at time t = §) — (polymers at timet = 20) — (micelle-like ag-
gregates at time t = 20000 and ¢ = 60000). Initially there is a 7 fo § ratlio
of hydrvophobic (black) to hydrephilic {white) monomers. The polymerization
occurs such that a hydrophobic monomer (which is the nucleation center) can
form a bond to a hydrophilic monomer which in turn can polymerize another
hydrophobic monomer etc. Af timet = 20 almost all free hydrophilic monomers
are polymerized. Note thai many of the hydrophilic monomers are not able fo
polymerize due fo the relatively low conceniration of hydrophobic monomers.
The formed micelle-like clusters are guite dynamic for these initial conditions
and paramelers which can be see by comparing the aggregates af time { = 20060
and 60000. For a higher initial conceniration of hydrophobic monomers, longer
polymers (with less mobility) on average are formed and thus more stable aggre-
gates emerges.



Simple Rules and  Complex Dynamical
States Structures

Figure 2: Complex Systems Dogma.

Is this really true? Could our “complex” hyperstructures have been cre-
ated only starting with very simple object states and interaction rules without
any external interaction with the system? 2 We doubt it. We do not doubt
that complex structures in formal systems do arise from rule and state descrip-
tions simpler than the structures. However, we question a stronger version of
the dogma that essentially holds that a common minimal simplicity underlies
all emergent structures, The notion of a crifical object complerily is presum-
ably important for the generation of dynamical hierarchies up to a given level.
Whether more explicit internal object complexity always will be necessary to
obtain yet higher order emergent structures - and whether there is an object
complexity limit above which any functional property can be produced, we do
not know. We would at least like to believe that the latter is true. See also [3}.

One can of course also question our current approach. In addition to the
minimal rules related to properties that define monomer-monomer interactions
in bulk solution, we include two different kinds of monomers as well as wa-
ter, which are all crucial in the resulting polymer-polymer interactions and the
resulting formation of the polymer aggregates. Considerable care is required
in defining such additional rules or they may simply “script” the outcome of
the dynamics. However, the rules presented here do not do that and their ra-
tionale is well-formed. A rule inside a monomer object that references other
monomers is obviously a second order predicate where first order predicates
reference monomer properties within itself. However, all explicit predicates
ate self-referential and local; they all reference monomers in the neighborhood.
They do not “cross” the levels and reference polymers or polymer aggregates.
Thus, the interactions these rules describe are non-trivial relative to the produe-
tion of higher order structures. The question of minimal description therefore
relates directly to this issue: What are the minimal rules and states, from the
perspective of a monomer, that can induce these higher order structures?

Thus, in this study, we investigate a (close to) minimal description of monomers
that can entail polymer and micelle-like structures. We have picked a level of
analysis and model at that level and investigate the entailed properties of ob-
ject interactions at that level. Ewery scientific investigation establish such a
working level. Our level is the level of monomers and water. Not lower (atoms,
elementary particles, etc), and not higher (polymers, membranes, etc.).

®Note that we are considering fixed objects with no self-programming or “mutations” in
the explicit rules and variables. Our objects do not learn, which seems reasonable, since they
model simple invariant molecules.



2 Simulations as Formal Dynamical Systems

What are the formal requirements for systems that are able to generate dynam-
ical hierarchies? By extracting some of the formal principles involved in the
generating higher order {(hyper-) structures in molecular self-assembly systems
and relating them to dynamical systems, one of the central issues becomes the
notion of a simulation as a synthetic mathematical method. We may define a
simulation as a dynamical system that formally is constituted by an ensemble
of objects

Si = 5i(fiy, 81, 73), (3)

i =1,...,n, where 5; is an object with internal state s;, object-object in-
teraction function f;; (which typically will have its own state s; as an ar-
gument together with the state(s) of the object(s) that it is interacting with
sj,j =1,1,2....), and local time 7;. To generate dynamics these object-object
interactions have to be scheduled by an updaie functional UV (e.g. parallel, ran-
dom, discrete event, etc). If we for simplicity assume that the update is times
stepped (as in the above LMA systems), which means that all objects always
have the same local (= global) time ¢, the dynamics of the interacting objects
in (3) is given by

{S:(t+ 1)} = U{S:(t)}, (4)

i=1,...,n. Note that in general no explicit, closed form function " : X — X
exists that takes the current global state

X(t) = (s1(8),-- -, 8n(®)) € X (3)

and maps it into some other state in the state space X
FX(t)) = X(t+1). (6)

Such a function is only implicitly given through (4). Systems which can be
expressed explicitly in the closed form (6) we may call models. Obviously, the
classical dynamical systems which can be explicitly written in the form (6) are
special cases of the form given in (3) and (4). This is true, because a system
that explicitly can be written in the form (6) can be viewed as a single object
51 from (3) which is iterated by fi1. Since there is no scheduling with only a
single object, the update functional U/, becomes the identity.

One of the mathematical consequences of having the dynamics of the form
(3) and (4), is that (4) may not be updatable due to conflicts between the f;;’s
and U. Thus, a notion of simulatability can be defined [10]. The connection
between the notion of simulatability and the notion of computability can now
be studied, and indeed the concepts are different, since computability is defined

through
{SiE+D}=U{S(®)}, T—o0 (7)



and simulatability is defined through
{Si(t + )} = U{S:()}, T=1. (8)

Thus, we can have simulatable systems with non-computable properties gener-
ated by the dynamics. In addition a mathematical machine, ¢ universel simula-
tor (U S), can be defined, which in a finite number of steps determines whether
a system is simulatable or not by describing the conditions under which a sys-
tem of the form (3) and (4) can distribute update functions over system objects
[10]. Further, it can give an appropriate order of updating for the objects, ifit is
simulatable, and detect where the problems are if the system is non-simulatable.
Thus, the scheduling problem naturally lives in the US. Because each operation
done by the IS can be interpreted as having a computational cost, the load bal-
ancing problem also naturally lives in this mathematical machine. For a more
detailed discussion of some of the mathematical consequences of the above we
refer to [10].

Thus, by defining dynamical systems of the form (3) and (4) an alternative
and more general avenue is open. We are not limited to closed form models
which only keep track of the number, or concentration, of particular objects
and where novel relations and objects cannot in a natural way be generated as
afunction of the dynamics (as e.g. in differential equations). Since the objects in
(3) and (4) are explicitly represented, so are their funciional properiies, thus the
molecular aggregates and their formation rates discussed above all come out as
observable, emergent properties generated by the dynamical system. Therefore
with this approach there is no need for ezplicitly taking all conceivable inter-
actions and new possible products into account together with postulates about
their formation rates. By defining the objects, the update functional, and the
observational functions appropriately, everything of interest will be generated
by the dynamics. Thus, we may view a stmulation as an emergence engine.
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