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Systems whose organization displays causal asymmetry constraints, from evolutionary trees to
river basins or transport networks, can be often described in terms of directed paths (causal flows)
on a discrete set of arbitrary units -such that states in state spaces, feed-forward neural nets, the
evolutionary history of a given collection of events or the chart of computational states visited
along a complex computation. Such a set of paths defines a feed-forward, acyclic network. A
key problem associated with these systems involves characterizing their intrinsic degree of path
reversibility: given an end node in the graph, what is the uncertainty of recovering the process
backwards until the origin? Here we propose a novel concept, topological reversibility, which is
a measure of complexity of the net that rigorously weights such uncertainty in path dependency,
quantifying the minimum amount of information required to successfully reverse a causal path.
Within the proposed framework we also analytically characterize limit cases for both topologically
reversible and maximally entropic structures. The relevance of these measures within the context
of evolutionary dynamics is highlighted.

Keywords:

I. INTRODUCTION

Causality is the fundamental principle pervading dy-
namical processes. Any set of time-correlated events,
from the development of an organism to historical
changes, defines a feed-forward structure of causal re-
lations captured by a family of complex networks called
directed acyclic graphs (DAGs). Their structure has re-
cently attracted the interest of researchers [1–4] since
DAGs represent time-ordered processes as well as a broad
number of natural and artificial systems. Examples
would include simple electronic circuits [5], feed-forward
neural [6] and transmission networks [7], river basins
[8], or even some food webs and chemical structures [9].
Whereas in some cases the causal interpretation is direct
-like, for example, an electronic circuit-, in others -like
food webs or river basins- the DAG representation is re-
lated to a chart where the dynamics of a given flow is
depicted. In these systems, causality refers to what is
possible if we have, for example a given gradient of po-
tential -like in a river basin- or energy -like in a food web
of a given ecosystem.

A paradigmatic example of a causal structure is the
chart of the relations among states followed by a com-
putational process through time. Intimately linked to
the topology of such computational chart, a fundamen-
tal feature of computations is its degree of logical re-
versibility [10, 11]. Indeed, it is said that a process is
logically reversible when, if reversing the flow of causal-
ity, i.e. going backwards from the computational out-
puts to their inputs, we can unambiguously recover the
causal structure of the process. Roughly speaking, if we
have a computer performing a function g : N → N and
we can unambiguously determine the input u from the

only knowledge of the value v = g(u), (i.e, g is a bijec-
tion) we say that the computation is logically reversible.
Otherwise, if there is uncertainty in determining u from
the only knowledge of v, we say that the computation
is logically irreversible, and thus, additional information
is needed to successfully reconstruct a given computa-
tional path. Analogously, the potential scenarios emerg-
ing from an evolutionary process raise similar questions.
Within evolutionary biology, a relevant problem is how
predictable is evolutionary dynamics. In particular, it
has been asked what would be the result of going back-
wards and ”re-playing the tape of evolution” [12, 13].
Since this question pervades the problem of how uncer-
tain or predictable is a given evolutionary path, it seems
desirable to actually provide a foundational framework.
In particular, the picture of evolutionary dynamics based
on climbing fitness landscapes [14] allows us to depict
adaptive changes as directed paths that can be in prin-
ciple mapped into a DAG. This would be the case for
discrete fitness landscapes associated to sequence spaces,
which can be climbed in an irreversible fashion through
adaptive walks [15, 16].

In this paper, we analytically extend the concept of
logical reversibility to the study of any causal structure
having no cyclic topologies, thereby defining a broader
concept to be named topological reversibility. Whereas
thermodynamical irreversibility implies thermodynami-
cal entropy production [17, 18], topological irreversibil-
ity implies statistical entropy production. In general, we
will say that a DAG is topologically reversible if we can
unambiguously recover a path going backwards from any
element to the origin. Genealogies and phylogenies are
examples of tree-like structures where a chronological or-
der can be established among the events and an unam-
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FIG. 1: Some illustrative DAGs. A topologically irreversible
DAG G(V,E), where M denotes the set of maximals, µ the
set of minimals and the V \M set the set of non-maximals
(a). The respective transitive closure, T (G) is shown in (b)
-see text.

biguous reconstruction of the lineage can be performed
for every element of the graph [19]. Following this argu-
ment, we will label a graph as topologically irreversible
when some uncertainty is observed in the reconstruction
of trajectories.

As shown below, the entropy presented here weigths
the extra amount of information that would be required
to recover the causal flow backwards. In this way, it can
be understood as a measure of complexity of the paths
defined by the net. The so-called path diversity or [20]
or other complexity measures based on path heterogene-
ity [21], [22] can be somehow understood as conceptual
precursors of the measure we define here. Other informa-
tion measures have been defined in the study of complex
networks [23–29], although such measures accounted for
connectivity correlations [24, 25, 27, 28] or were used to
characterize a Gibbsian formulation of the statistical me-
chanics of complex networks [23]. We finally note that
the starting point of our formalism resembles the classi-
cal theory of Bayesian networks. However, the particular
treatment of reversibility proposed here is qualitatively
different from the concept of uncertainty used in such a
framework and closer to the one described in [26].

The paper is organized as follows: In section II we pro-
vide the basic concepts underlying our analytical deriva-
tions. Section III provides the general mathematical def-
inition of topological reversibility and the general expres-
sion for the average uncertainty associated to the rever-
sion of the causal flow. This is consistently derived from
the properties of the adjacency matrix. In section IV we
consider two limit cases, finding the exact analytic form
for their entropies and predicting the most uncertain con-
figuration. Finally, in section V we outline the generality
and relevance of our results in terms of characterizing
DAG structure.

II. THEORETICAL BACKGROUND

The theoretical roots of this paper stem from fun-
damental notions of directed graph theory [30, 31], or-
dered set theory [32, 33] and information theory [34–37].
Specifically, we make use of Shannon’s entropy which, as
originally defined, quantifies the uncertainty associated
to certain collections of random events [34, 36]. In our
framework, the entropy in a given feed-forward graph
measures the uncertainty in reversing the causal flow de-
picted by the arrows[45].

A. Directed graphs and orderings

Let G(V,E) be a directed graph, being V =
{v1, ..., vn}, |V | = n, the set of nodes, and E =
{〈vk, vi〉, ..., 〈vj , vl〉} the set of edges. The ordered pair
notation, 〈vk, vi〉, implies that there is an arrow in the
following direction:

vk → vi.

Given a node vi ∈ V , the number of outgoing links, to be
written as kout(vi), is called the out-degree of vi and the
number of ingoing links of vi is called the in-degree of vi,
written as kin(vi). The adjacency matrix of a given graph
G, A(G) is defined as Aij(G) = 1 ↔ 〈vi, vj〉 ∈ E; and
Aij(G) = 0 otherwise. Through the adjacency matrix,
kin and kout are computed as

kin(vi) =
∑
j≤n

Aji(G); kout(vi) =
∑
j≤n

Aij(G).

Furthermore, we will use the known relation between the
k-th power of the adjacency matrix and the number of
paths of length k going from a given node vi to a given
node vj Specifically,

(A(G))kij = (

k times︷ ︸︸ ︷
A(G)× ...×A(G))ij

is the number of paths of length k going from node vi to
node vj [31].

A feed-forward or directed acyclic graph is a directed
graph characterized by the absence of cycles: If there
is a directed path from vi to vk (i.e., there is a finite
sequence 〈vi, vj〉, 〈vj , vl〉, 〈vl, vs〉, ..., 〈vm, vk〉 ∈ E) then,
there is no directed path from vk to vi. Conversely, the
matrix AT (G) depicts a DAG with the same underlying
structure but having all the arrows (and thus, the causal
flow) inverted. Given its acyclic nature, one can find a
finite value L(G) as follows:

L(G) = max{k : (∃vi, vj ∈ V : (A(G))kij 6= 0)}. (1)

It is easy to see that L(G) is the length of the longest
path of the graph. The existence of such L(G) can be
seen as a test for acyclicity. However, the use of leaf-
removal algorithms [38, 39], i.e. the iterative pruning
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of nodes without outgoing links, is by far more suitable
than the above method, in terms of computational costs.
In a DAG, a leaf-removal algorithm removes completely
the graph in a finite number of iterations, specifically, in
L(G) iterations -see eq. (1).

Now we study the interplay between DAGs and order
relations. Borrowing concepts from order theory [33], we
define the following set:

M = {vi ∈ V : kin(vi) = 0},
to be named the set of maximal nodes of G, by which
|M | = m. The set of all paths π1, ..., πs, s ≥ |E|, from
M to any node vi ∈ V \M is indicated as Π(G). Given
a node vi ∈ V \M , the set of all paths from M to vi is
written as Π(vi) ⊆ Π(G). Furthermore, we will define the
set v(πk) as the set of all nodes participating in this path,
except the maximal one. Additionally, one can define the
set of nodes with kout = 0 as the set of minimal nodes
of G, to be named µ. Notice that the absence of cycles
implies that m ≥ 1 and that the set of minimals µ must
also contain at least one element -see fig. (1a).

Attending to the node relations depicted by the ar-
rows, and due to the acyclicity property, at least one
node ordering can be defined, establishing a natural link
between order theory and DAGs. This order is achieved
by labeling all the nodes with sequential natural numbers
and obtaining a configuration such that:

(∀〈vi, vj〉 ∈ E)(i < j). (2)

Accordingly, DAGs are ordered graphs [2]. However, as
order relations imply transitivity, it is not the DAG but
its transitive closure what properly defines the order re-
lation among the elements of V . The transitive closure
of G (see fig. 1b), to be written as T (G) = (VT , ET )
is defined as follows: Any pair of nodes vi, vk ∈ V by
which there is at least one (directed) path going from vi
to vk are connected through a link 〈vi, vk〉 in T (G). In
this framework, for a given number of maximal nodes, in
the transitive closure the addition of a link either creates
a cycle or destroys a maximal or minimal node. If the
pairs defining the set of links of T (G) are conceived as the
elements of a set relation ET ⊂ V × V , such a relation
satisfies the following three properties:

i) @〈vk, vk〉,
ii) (〈vi, vk〉 ∈ ET )⇒ (〈vk, vi〉 /∈ ET ),
iii) (〈vi, vk〉 ∈ ET ∧ 〈vk, vj〉 ∈ ET )⇒ (〈vi, vj〉 ∈ ET ).

The DAG definition implies that E directly satisfies the
two first conditions whilst the third one (transitivity) is
only warranted for ET . Thus, only ET holds all require-
ments to be an order relation, specifically, a strict partial
order. The transitive closure of a given DAG can be ob-
tained by means of the so-called Warshall’s algorithm
[31].

Finally, a subgraph F(VF , EF ) ⊆ G is said to be lin-
early ordered or totally ordered provided that for all pairs

of nodes vi, vk ∈ VF such that k < i, then

〈vk, vi〉 ∈ EF . (3)

Let us notice that if we understand EF as a set relation
EF ⊂ VF×VF , EF is a strict linear order. If G is linearly
ordered and W ⊂ G, we refer to G as a topological sort of
W [31].

B. Uncertainty

According to classical information theory [34–37], let
us consider a system S with n possible states, whose oc-
currences are governed by a random variable X with an
associated probability mass function formed by p1, ..., pn.
According to the standard formalization, the uncertainty
or entropy associated to X, to be written as H(X), is:

H(X) = −
∑
i≤n

pi log pi,

which is actually an average of log(1/p(X)) among all
events of S, namely, H(X) = 〈log(1/p(X))〉, where 〈...〉
is the expectation or average of the random quantity
between parentheses. As a concave function, the en-
tropy satisfies the so-called Jensen’s inequality [35], which
reads: 〈

log
1

p(X)

〉
≤ log

〈
1

p(X)

〉
≤ log n, (4)

The maximum value log n is achieved for pi = 1/n for
all i = (1, ..., n). Jensen’s inequality provides an upper
bound on the entropy that will be used below. Anal-
ogously, we can define the conditional entropy. Given
another system S′ containing n′ values or choices, whose
behavior is governed by a random variable Y , let P(s′i|sj)
be the conditional probability of obtaining Y = s′i ∈ S′ if
we already know X = sj ∈ S. Then, the conditional en-
tropy of Y from X, to be written as H(Y |X), is defined
as:

H(Y |X) = −
∑
j≤n

pj
∑
i≤n′

P(s′i|sj) log P(s′i|sj). (5)

which is typically interpreted as a noise term in informa-
tion theory. Such a noise term can be understood as the
minimum amount of extra bits needed to unambiguously
determine the input set from the only knowledge of the
output set. This will be the key quantity of our paper, for
it accounts for the dissipation of information in a given
process.

III. TOPOLOGICAL REVERSIBILITY AND
ENTROPY

Let us imagine that a node vi ∈ V \M of a given DAG
G, receives the visit of a random walker that follows the
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FIG. 2: Uncertainty in the reversal of causal flows in a DAG.
Notice that more than one pathway, with more or less prob-
ability to be chosen, connect maximals from each terminal
(a). Given a node (v6) receiving two inputs, we consider two
different alternatives to go backwards. The uncertainty in
this particular case is obtained by computing hloc(vi) from
eq. (III B), i.e., hloc(v6) = log 2 assuming equiprobability in
the selection (b)

.

flow chart depicted by the DAG. We only know that it
began its walk at a given maximal node and it followed a
downstream random path attending to the directions of
the arrows to reach the node vi. What is the uncertainty
associated to the followed path? In other words, what
is the amount of information we need, on average, to
successfully perform the backward process?

A. The definition of entropy

As we mentioned above, the starting point of our
derivation is somewhat close to the treatment of Bayesian
networks [40]. In our approach, the first task is to define
the probability to follow a given path πk ∈ Π(vi) when re-
versing the process. Let v(πk) be the set of nodes partici-
pating in the path πk except the maximal ones. Maximal
nodes are not included in this set because they are the
ends of the path of the reversal process. The probability
to chose such a path from node vi by making a random
decision at every crossing when reversing the causal flow
will be:

P(πk|vi) =
∏

vj∈v(πk)

1
kin(vj)

. (6)

Consistently:

∑
πk∈Π(vi)

 ∏
vj∈v(πk)

1
kin(vj)

 = 1.

As P is a probability distribution, we can compute the
uncertainty associated to a reversal of the causal flow,
starting the reversion process from a given node vi ∈

V \M , to be written as h(vi):

h(vi) = −
∑

πk∈Π(vi)

P(πk|vi) log P(πk|vi)

The overall uncertainty of G, written as H(G), is com-
puted by averaging h over all non-maximal nodes, i.e:

H(G) = −
∑

vi∈V \M

p(vi)
∑

πk∈Π(vi)

P(πk|vi) log P(πk|vi)

=
∑

vi∈V \M

p(vi)h(vi). (7)

B. The transition matrix Φ and its relation to the
adjacency matrix

The main combinatorial object of our approach is not
the adjacency matrix but instead a mathematical repre-
sentation of the probability to visit a node vi ∈ V \M
starting the backward flow from a given, different node
vk ∈ V \M regardless the distance separating them. As
we shall see, this combinatorial information can be en-
coded in a matrix, to be named transition matrix Φ and
we can explicitly obtain it from A(G). We begin by defin-
ing

V (Π(vj)) ≡
⋃

πk∈Π(vj)

v(πk),

and we can see that:

h(vi) = −
∑

πk∈Π(vi)

P(πk|vi) log P(πk|vi)

=
∑

πk∈Π(vi)

 ∑
vj∈v(πk)

P(πk|vi) log(kin(vj))

 .
At this point, we notice that we obtained a factoriza-
tion of the particular contribution of the entropy of ev-
ery node, log(kin(vj)) and the probability for this node
to participate in a given causal path starting at M and
ending at vi, namely

∑
vj∈v(πk) P(πk|vi). Let us thus de-

fine φij as the coefficients of a (n−m)× (n−m) matrix
Φ(G) = [φij(G)], i.e. our transition matrix Φ(G):

φij(G) =
∑

πk:vj∈v(πk)

P(πk|vi).

For the moment, we will not develop its explicit form.
Therefore:

=
∑

vj∈V (Πi)

log(kin(vj))

 ∑
πk:vj∈v(πk)

P(πk|vi)


=
∑

vk∈V \M

φik(G)hloc(vk). (8)
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Let us explain eq. (8) and its consequences. First we
define hloc(vi) as:

hloc(vi) = log(kin(vi)).,

where L indicates the amount of local entropy introduced
in a given node when performing the reversion process -
see fig (2). Thereby, it is the amount of information
needed to properly reverse the flow backwards when a
bifurcation point is reached having kin possible choices.

Now we derive the general expression for Φ. The
derivation allows us to obtain a consistent mathemati-
cal definition of the transition matrix in terms of A(G).
We first notice two important facts linking paths and the
powers of the adjacency matrix that are only generically
valid in DAG-like networks. First, we observe that:

|Π(vi)| =
∑

j≤L(G)

∑
l:vl∈M

(AT (G))jil, (9)

being L(G) the length of the longest path of the graph
as defined by (1). Analogously, the number of paths of
Π(vi) crossing vk, to be written as αik is:

αik ≡ |{πj ∈ Π(vi) : vk ∈ vi(πj)}|
=

∑
`≤L(G)

(
AT (G)

)`
ik
.

The above quantities provide the number of paths. To
compute the probability to reach a given node, we have to
take into account the probability to follow a given path
containing such a node, defined in (6). To rigorously
connect it to the adjacency matrix, we first define an
auxiliary, (n−m)× (n−m) matrix B(G), namely:

B(G)ij = (Aij(G))

∑
j≤n

Aij(G)

−1

=
Aij(G)
kin(vi)

,

where vi, vj ∈ V \M and, as defined in previous sections,
n = |V |, m = |M |. From this definition, we obtain
the explicit dependency of Φ from the adjacency matrix,
namely[46],

φij(G) =
∑

k≤L(G)

(
BT (G)

)k
ij
. (10)

and accordingly, we have

φii(G) =
(
BT (G)

)0
ii

= 1. (11)

It is worth to mention that Φ(G) resembles the transi-
tion matrix related to the concept of information mobil-
ity [26]. In the general case of non-directed graphs, one
can assume the presence of paths of arbitrary length,
which leads (using a correction factor tied to the length
of the path) up to an asymptotic form of the transition
matrix in terms of the exponential of the adjacency ma-
trix. However, the intrinsic finite nature of the paths in
a given DAG makes the above asymptotic treatment non
viable.

C. The general form of the Entropy

Let us now define the overall entropy in a compact
form, only depending on the adjacency matrix of the
graph. From eqs. (5, 7, 8), we obtain

H(G) =
∑

vi∈V \M

p(vi)
∑

vk∈V \M

φik(G)hloc(vk). (12)

This is the central equation of this paper. This measure
quantifies the additional information (other than topo-
logical one) to properly reverse the causal flow. We ob-
serve that this expression is a noise term within stan-
dard information theory [34]. In this equation we have
been able to decouple the combinatorial term associated
to the multiplicity of paths at one hand, and the par-
ticular contribution to the overall uncertainty of every
node, at the other hand. The former is fulfilled by the
matrix Φ, which encodes combinatorial properties of the
system, and how they influence in the computation of the
entropies. The latter is obtained from the set of local en-
tropies hloc(v1), ..., hloc(vn−m). These terms account for
the contribution of local topology -i.e. the uncertainty
when choosing an incoming link at the node level in the
reversion of the causal flow- to the overall entropy. This
uncoupling is a consequence of the extensive property
of the entropy and, putting aside its conceptual inter-
est, simplifies all derivations related to the uncertainties.
This general expression of the entropy can be simplified
if we assume that ∀vi ∈ V \M , p(vi) = 1/(n−m). There-
fore, by defining

Q(G) =
∑

vi∈V \M

∑
vk∈V \M

φik(G)hloc(vk) (13)

and thus H(G) is expressed as:

H(G) =
1

n−mQ(G) (14)

Finally, we recall that the above entropy is bounded by
Jensen’s inequality (4) to equation (8)i.e.,

H(G) ≤ 1
n−m

∑
vi∈V \M

log(|Π(vi)|). (15)

Notice that the quantity on the right side of eq. (15) is
the uncertainty obtained by considering all paths from
M to vi equally likely to occur.

D. Topological reversibility

Having defined an appropriate and well grounded en-
tropy measure, now we can discuss the meaning of topo-
logical (ir)reversibility. Let us first make a qualitative
link with standard theory of irreversible thermodynam-
ics, where irreversibility is tied to the parameter of en-
tropy production σs in the entropy balance equation [18].
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FIG. 3: Limit cases of graphs. (a) A topological reversible structure featured by a tree DAG structure, H(G) = 0. (b) With
the same number of nodes and links, its opposite structure is a topologically irreversible DAG featured by a star DAG with
m = n− 1. Notice that for a star graph H(G) = log(n− 1) where n = 7 in this particular case. (c) Graphical representation of
the most entropic graph having 3 maximal nodes and 3 minimal nodes. Notice that the set V \M is linearly ordered and that
every maximal is connected to every non-maximal -see text and Appendix A.

Here, σs = 0 depicts thermodynamically reversible pro-
cesses, whereas σs > 0 appears in irreversible processes
[17, 18]. Irreversibility is rooted in the impossibility of re-
versing the process without generating a negative amount
of entropy, which contradicts to the second law of ther-
modynamics. Consistently, we will call topologically re-
versible those DAG structures such that

H(G) = 0.

In those structures (they belong to the set of trees, as
we shall see in the following section) no ambiguity arises
when performing the reversion process. On the contrary,
a given DAG by which

H(G) > 0

will be referred to as topologically irreversible. DAGs
having H(G) > 0 display some degree of uncertainty tak-
ing the causal flow backwards, since the reversion pro-
cess is subject to some random inevitable decisions. In
these cases, H(G) is the average of the amount of ex-
tra information needed to successfully perform the pro-
cess backwards. Similarly, the successful reversion of a
thermodynamically irreversible process would imply the
(irreversible) addition of external energy, or that the re-
version of a logically irreversible computation requires an
extra amount of external information to solve the ambi-
guity arising in rewinding the chain of computations. In
this context, for example, reversible computation is de-
fined by considering a system of storage of history of
the computational process [10]. Furthermore, we ob-
serve that, roughly speaking, we can associate the logical
(ir)reversibility of a computational process to the topo-
logical (ir)reversibility of its DAG representation. In our
study, the adjective topological arises from the fact that
we only use topological information to compute the un-
certainty. Thus, we deliberately neglect the active role
that a given node can play as, for example, a processing

unit, or the different weights of the paths. However, it
is worth to mention that entropy can be generalized for
DAGs where links are weighted by a probability to be
chosen in the process of reaching the maximal.

IV. LIMIT CASES: MAXIMUM AND
MINIMUM UNCERTAINTY

Let us illustrate our previous results by exploring two
limit cases, namely DAGs having zero or maximal un-
certainty. In this section we identify those feed-forward
structures which, containing n nodes and without a pre-
defined number of links, minimize or maximize the above
uncertainties. The minimum uncertainties are obtained
when the graph G is a special kind of tree -a topologically
reversible structure-, to be described below. Afterwards,
we summarize the main properties of the graph configu-
ration displaying maximum entropy. The detailed deriva-
tions of the latter case are slightly sophisticated and are
provided in the Appendix A.

A. Zero Uncertainty: Trees

Imagine a random walker exploring a (directed) tree
containing only a single maximal (fig. 3a). From such
a maximal node, there exists only one path to a given
node. In the evolutionary context, a single ancestor is
at the root of all evolutionary tree [41]. Thus, the pro-
cess of recovering the history of the random walker up to
its initial condition is completely deterministic, and no
uncertainty can be associated to it -in purely topological
terms. Formally, we recognize two defining features on
trees, namely:

• m = 1

• (∀vi ∈ V \M)(kin(vi) = 1).
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FIG. 4: a) Evolution of the Entropy (in bits) starting from a
linearly ordered DAG having n = 25 nodes and one maximal,
i.e., G̃25(1), and then successively removing a randomly chosen
link until we obtain a linear chain, a topologically reversible
structure, thereby having zero entropy. Every point of the
graph is obtained by evaluating the entropies of the members
the ensemble g(25, 1) having a defined number of links -the
search is performed by computing 500 replicas. We appreciate
the decreasing trend as predicted -see text. In b) we show a
qualitative picture of the kind of graph we find as starting
point of the numerical exploration. c) Shows how it looks like
an intermediate member and d) the final one.

.

We thus conclude that there is no uncertainty in recover-
ing the flow, since the two reported properties are enough
to conclude that there is 1 and only 1 path to go from M
to any vi ∈ V \M . This agrees with the intuitive idea
that trees are perfect hierarchical structures. This result
complements the more standard scenario of the forward,
downstream scenario paths followed by a random walker
on a tree [19]. It is worth noting that evolutionary trees,
particularly in unicellular organisms, have been found to
be a poor representation of the actual evolutionary pro-
cess [42, 43].

B. Maximum Uncertainty

Now we shall concern ourselves with the maximally
entropic scenario(s). We refer the reader interested on
the mathematical details to the derivations contained in
the Appendix A. We observe that, intuitively, a star star
DAG having n nodes, being m = n − 1 the maximal
ones can be understood as opposite to a tree, in terms of
H(G). Specifically, it is easy to see that, whereas a tree
GT having n nodes displays H(GT ) = 0, a star DAG, G?,
m = n− 1 maximal nodes has an entropy like:

H(G?) = log(n− 1).

However, the combinatorial nature of the defined entropy
enables to more complex, non intuitive structures to dis-
play higher values. Indeed, let g(n,m) be the ensemble
of all connected DAG structures having n nodes, being
m of them the maximal ones. It can be shown -see Ap-
pendix A- that the most entropic graph of the ensemble
g(n,m) -to be referred as G̃n(m)- is the graph obtained
applying the following rules:

1. For all pair {vi, vk} such that vi ∈ M and vk ∈
V \M generate the link

〈vi, vk〉

2. For every pair {vj , vl} such that vj , vl ∈ V \M and
such that j < l generate the link

〈vj , vl〉.

The exact expression for the entropy of the above con-
structed graph is -see Appendix A:

H(G̃n(m)) =
n

n−m
∑

i≤n−m

log(m+ i− 1)
m+ i

Finally, we emphasize that it can be shown that, for n�
1, the most entropic DAG having n nodes and having no
constraints related to the number of maximal nodes or
total connections is G̃n(2), i.e., ∀k 6= 2, k < n:

H(G̃n(2)) > H(G̃n(k)),

and, therefore, since ∀G ∈ g(n,m), H(G̃n(m)) > H(G),
G̃n(2) displays the absolute maximum of the entropy
when having n possible nodes and a DAG-like structure.
The active role played by the combinatorial pattern and
the number of links leads to this somehow unexpected re-
sult. It should be noted that intermediate configurations
can also display high entropies -see figure (4). The gen-
eral problem, i.e., to find the most entropic configuration
having a fixed number of links and nodes is not addressed
here. Instead of it, we made a numerical exploration of
the evolution of the entropies starting from a given G̃n(m)
and removing links at random until we have a chain -a
perfect reversible structure- attached to a given number
of maximals -see figure (4). We observe that, according
to our derivations -see lemma 1 in the Appendix A- the
removal of links result in a net reduction of uncertainty.

V. DISCUSSION

In this paper we address the problem of quantifying
path dependencies using the DAG metaphor. To this
goal, we introduce the concept of topological reversibil-
ity as a fundamental feature of causal processes that can
be depicted by a DAG structure. The intuitive defini-
tion is rather simple: A system formed by an aggrega-
tion of causal processes is topologically reversible if we
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can recover all causal paths with no other information
than the one provided by the topology. If graph topol-
ogy induces some kind of ambiguity in the backward pro-
cess, the graph is said to be topologically irreversible, and
additional information is needed to build the backward
flows.

We provided the analytical form of the uncertainty (the
amount of extra information needed) arising in the rever-
sion process by uncoupling the combinatorial information
encoded by the graph structure from the contributions
of the local connectivity patterns of individual nodes, as
depicted in eqs. (13,14). It is worth noting that all our
results are derived from just two basic concepts: The
adjacency matrix of the graph and the definition of en-
tropy. Furthermore, we offer a constructive derivation of
the two limit cases, namely trees (as the reversible ones),
and linear ordered graphs (having two maximal nodes)
as the most uncertain ones.

According to our results, only a tree DAG is topolog-
ically reversible. However, beyond this particular case,
the quantification of topological irreversibility by using
the entropy proposed here could provide insights in the
characterization of more general feed forward systems.
An illustrative case-study can be found precisely in bi-
ological evolution. The standard view of the tree of life
involves a directional, upward time-arrow where the ge-
netic structure of a given species (its genome) derives
from some ancestor after splitting (speciation) events.
One would think that this classical but too simplistic
view of evolution as a tree gives a topologically reversible
lineage of genes, changing by mutations and passing from
the initial ancestor to current species in a vertical in-
heritance. However, it has been recently evidenced that
the so-called horizontal gene transfer among unrelated
species may have had a deep impact in the evolution
and diversification in microbes [43]. According to this
genetic mechanism the tree-like picture and thus the log-
ical/topological reversibility is broken by the presence of
cross-links between brother species. Under the light of
these evidences, tree-based phylogenies become unrealis-
tic. In this context, our theoretical approach provides a
suitable framework for the characterization of the logi-
cal irreversibility of biological evolution and, in general,
for any process where time or energy dissipation impose
a feed-forward chart of events. Further research in this
topic will contribute to understand the causal structure
of evolutionary processes.

Appendix A: Derivation of the most Entropic
structure

In this mathematical appendix we construct in detail
the most entropic DAG.

1. Construction of G̃: The linear ordering in V \M .

Let G be a feed-forward organized graph containing
n nodes, where m of them are maximal. Since for the
entropy computation all nodes become indistinguishable,
let g(m,n) be the ensemble of all different possible feed-
forward configurations containing n nodes, where m of
them are maximal. We are looking for a graph, to be
written as

G̃n(m) ∈ g(n,m)

such that ∀Gi ∈ g(m,n):

Gi ⊆ G̃n(m),

i.e., a graph containing all possible links, preserving the
number of maximal nodes and the property of being a
DAG. This implies, as defined in section II A, eq. (3),
that we must add links to the set V \M until it becomes
linearly ordered, attending to a labeling of nodes which
respect the ordering depicted by the feed-forward graph
-see figure (3c). Once we have the set of nodes V \M
linearly ordered, we proceed to generate a link from any
node vi ∈M to every node vk ∈ V \M . We thus obtain
a feed forward graph containing m maximal nodes and
only 1 minimal node. In the above constructed graph,
any new link creates a cycle or destroys a maximal vertex.
For the sake of clarity we will differentiate the labeling
of M and V \M when working with G̃m(n). Specifically,
nodes vi ∈ V \M will be labeled sequentially from 1 to
n − m respecting the ordering defined in eq. (2). This
labeling will be widely used in the forthcoming sections.
Furthermore, we recall that no special labeling other than
different natural numbers is needed for vk ∈ M , since
there will be no ambiguous situations.

As an example, we explicitly write the adjacency ma-
trix of G̃6(3), depicted in figure...

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

 .

Now we are ready to demonstrate the first two lemmas
of the appendix.

Lemma 1: Given two fixed values of m and n and two
DAGs, G̃n(m) and G ∈ g(n,m), G 6= G̃n(m), the following
inequality holds[47]:

H(G̃n(m)) > H(G).
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Proof. Any feed-forward graph of the ensemble g(m,n)
other than G̃n(m) is obtained by removing edges of
G̃n(m). This edge removal process will necessarily result
in a reduction of uncertainty.�

Lemma 2: The entropy of G̃n(m) is bounded as:

H(G̃n(m)) ≤ logm+
log 2

2
(n−m− 1).

Proof. This Lemma is a direct consequence of the ap-
plication of Jensen’s inequality -see equation (4). Given
the labeling proposed above, and starting from eq. (9)
the number of paths in G̃n(m) from M to vi ∈ V \M will
be:

|Π(vi)| =
∑

j≤L(G)

∑
l:vl∈M

[
AT (G̃n(m))

]j
il

=
∑

l:vl∈M

∑
j≤i

(
i

j

)

= m
∑
j≤i

(
i

j

)
= m · 2i−1.

Using Jensen’s inequality, one has that:

h(vi) ≤ log |Π(vi)|
= logm+ (i− 1) log 2.

Therefore,

H(G̃n(m)) =
1

n−m
∑

vi∈V \M

h(vi)

≤ 1
n−m ((n−m) logm+

+
(n−m)(n−m− 1)

2
log 2

)
= logm+

log 2
2

(n−m− 1).�

2. The explicit form of entropies of G̃n(m)

The next step is to derive the mathematical expression
corresponding to G̃n(m). We begin with a lemma which
describes the structure of Φ(G̃n(m)) -see section III B,
equation (10).

Lemma 3: Given the labeling proposed in the section
(A 1) the probabilities defining the matrix Φ(G̃n(m)) are
given by:

φik =
1

m+ k
(k < i).

Proof. The first observation is that, for any node vi ∈
V \M the probability to reach one maximal is

1
m
.

What about v1, i.e., the first node we find after the max-
imal set? We observe that, from the viewpoint of node vi
(i > 1), the situation is completely analogous to the con-
figuration where there are m + 1 maximal nodes, since,
due to the property of acyclicity, the probability to pass
through v1 does not depend on what happens above v1.
Therefore:

φi1 =
1

m+ 1
.

Running the reasoning from v1 to vi−1, we find that:

φik =
1

m+ k
(k < i).�

Interestingly, for k < i, φik is invariant, no matter the
value of i. This leads matrix Φ(G̃n(m)) to be:

Φ(G̃n(m)) =



1 0 0 ... 0
1

m+1 1 0 ... 0
1

m+1
1

m+2 1 ... 0
... ...
... ...

1
m+1

1
m+2

1
m+3 .. 1

 , (A1)

Now we are ready to obtain the final expression of the
entropy of G̃n(m). First, we observe that

hloc(vk) = log(m+ k − 1).

Therefore, inserting it and (A1) into eq. (14), we obtain,
after some algebra:

H(G̃n(m)) =
n

n−m
∑

i≤n−m

f(vi),

where f(vi) is a function f : V \M → R+,

f(vi) =
log(m+ i− 1)

m+ i
. (A2)

We can see that the value entropy is reduced to the com-
putation of the average of f over the set V \M . Having
G̃n(m) n nodes, from which m of them are maximal ones,
we will refer to this average as 〈fn(m)〉, defined as:

〈fn(m)〉 =
1

n−m
∑

i≤n−m

f(vi) (A3)
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3. Absolute maxima of entropies

Theorem 1: Let

G̃n(1), ..., G̃n(n− 1)

be the set whose members are the maximum entropic
structures of ensembles of DAGs having n nodes,
g(1, n), ..., g(n− 1, n), respectively. Then, ∀i 6= 2

H(G̃n(2)) > H(G̃n(i))

for values of n� 1.

Proof. Let us first notice that:

Q(G̃n(2)) = Q(G̃n(1)),

enabling us to derive the first inequality:

H(G̃n(2)) =
1

n− 2
Q(G̃n(1))

>
1

n− 1
Q(G̃n(1))

= H(G̃n(1)).

Once we demonstrated that H(G̃n(2)) > H(G̃n(1)), we
proceed to demonstrate that H(G̃n(2)) > H(G̃m(3)). To
this end, let us first observe a key property of f , defined
in eq. (A2). Indeed, we observe that (∀ε > 0)(∃kε) :
(∀k > kε),

f(vk) < ε,

provided that n is large enough. From this property, and
since 〈fn(m)〉 is an average -see eq. (A3)- we can be sure

that (∃n∗) : (∀n > n∗),

log 2
3

> 〈fn(3)〉,

by choosing appropriately n in such a way that we have
enough terms lower than a given ε to obtain the above
desired result. Thus, from eq. (A3) and knowing that

H(G̃n(2))−H(G̃n(3)) ∝ log 2
3
− 〈fn(3)〉,

(with proportionally factor equal to n/(n − 2)) we can
conclude that

H(G̃n(2)) > H(G̃n(3)).

The general case easily derives from the same reasoning,
since:

H(G̃n(k))−H(G̃n(k + 1)) ∝ log(k + 1)
k

− 〈fn(k + 1)〉,

and thus, we can conclude that:

(∀k ≤ 2) H(G̃n(k)) > H(G̃n(k + 1)).

This closes the demonstration that, for n large enough,
G̃n(2) is the most entropic graph. According to numeri-
cal computations, this demonstration holds provided that
n > 14. �

Acknowledgments

This work was supported by the EU 6th framework
project ComplexDis (NEST-043241, CRC and JG), the
UTE project CIMA (JG), James McDonnell Foundation
(BCM and RVS) and the Santa Fe Institute (RVS). We
thank an anonymous referee and the Complex System
Lab members for fruitful conversations.

[1] G. Csardi, K. J. Strandburg, L. Zalanyi, J. Tobochnik,
and P. Erdi, Physica A 374, 783 (2007).

[2] B. Karrer and M. E. J. Newman, Phys Rev Lett 102,
128701 (2009).

[3] S. Lehmann, B. Lautrup, and A. D. Jackson, Phys. Rev.
E 68, 026113 (2003).

[4] S. Valverde, R. V. Solé, M. A. Bedau, and N. Packard,
Phys Rev E Stat Nonlin Soft Matter Phys 76, 056118
(2007).

[5] R. Clay, Nonlinear networks and systems (John Wiley &
Sons Inc, New York, 1971).

[6] S. Haykin, Neural Networks : a Comprehensive Founda-
tion (Prentice-Hall. London, 1999).

[7] H. Frank and I. T. Frisch, Communication, transmission
and transportation networks (Addison-Wesley (Reading
Mass), 1971).
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