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Summary

The dynamics of extinction and diversi�cation of life is not a simple random
process� driven by arbitrary inputs� Biotic interactions are known to play a very
important role in the population response to physical factors� In spite of this fact�
it is not clear how the ecological scale is related with the macroevolutionary one�
In this paper we suggest that both levels are� at least to some extent� decoupled�
Using a simple model of large�scale evolution� we show how an n�species ecosystem
evolves towards a critical state where extinctions of all sizes are generated� This state
involves a situation where high unpredictability is present� The basic properties of
the overall macroevolutionary pattern are well reproduced and a new interpretation
for this process is suggested�
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� Introduction

Populations change in time� often in rather complex ways �May� ����� Bascompte
and Sol� ������ Sometimes� they go extinct� Extinctions can be associated with
external factors as changes in sea level or the fall of an asteroid� However� biotic
interactions play at least an equally important role� epidemics or the introduction or
disappearance of a single species can trigger changes in population densities in other
species� Eventually� the players in a community can be associated in an unlikely
chain of events� Interactions can be extremely complex and involve apparently
unrelated species� A very interesting example is the e�ect of the introduction of a
mammalian virus to Southern England on the large blue butter�y �Maculina arion�
�Ratcli�e� ������ The chain involved rabbits� certain type of grasses� a species of
ants and the caterpillars of the blue butter�y�

Population �uctuations are a classical problem in theoretical ecology� The stan�
dard mathematical approach is the Lotka�Volterra �LV� n�species model�

dNi

dt
� Ni

�
�i �

nX
j��

�ijNj�t�

�
���

where fNig� i � �� ���� n are the populations of each species� These models have
been explored in deep� Two main qualitative problems have been considered� �i�
small�n problems� involving two or three species and �ii� large�n models� involving a
full network of interacting species� In the last case� the problem of stability versus
complexity �May� ���� Tilman et al�� � remains still open� The so called commnity
matrix � � ��ij� is the basic subject of all these studies�

Figure ��� near here

Many interesting theoretical results have been obtained when certain assump�
tions over � hold �May� ����� Svirezhev and Logofet� ������ The following� and
already classical result was obtained by May in randomly connected food webs
�May� ������ Let C be the fraction of non�zero elements in � and let �� be the
variance of the set f�ijg� It was shown that the system will be stable if �

p
nC � �

and unstable otherwise� This transition is sharply de�ned for large n� This result�
though may be not directly applicable to real ecosystems �Pimm� ����� see however
Kenny and Loehle� ����� shows us that thresholds to complexity and stability can
exist in generic ecosystem models�

Nevertheless� the stability of a given ecosystem is not a rigid property� Long
term changes are always threatening stability and the community structure and
species competition change over time� Extinction can occur and many examples
are available �Keitt and Market� ����� for a review� see Pimm� ����� and references
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therein�� These extinctions only involve one or a few species but on a larger time
scale� larger events can occur� In fact� the study of the available evidence from the
fossil record �Benton� ����a� shows events of all sizes� from small to mass extinctions
�Jablonski� ������

As an example� in �gure � we show the time �uctuations in the extinction rate �for
genera� of marine animals� We see a wide range of �uctuations and the computation
of the power spectrum P �f�� also shown� gives us a continuous� power�law decay
P �f� � f�� with � � 
���� 
�
�� This result is consistent with a recent hypothesis
which tries to explain the ubiquity of scale�free laws in nature� the theory of self�
organized critical phenomena �Bak et al�� ����� Bak and Sneppen� ������ Self�
organized criticality �SOC� is present in a wide set of systems far from equilibrium�
from sandpiles and earthquakes to astrophysics and it has been suggested to be
present in biological evolution �Sneppen et al�� ����� Sol and Bascompte� ������
Such systems tend to organize themselves� after a transient period� in a state with
no characteristic time� or length scale other than the system size� Small� basically
random changes �the fall of a sand grain or the appearance of a new species� can be
enough to trigger large events� In �gure � a di�erent picture of the discontinuous
nature of extinction events is shown� Here the total number of Trilobita families is
shown from the early Ordovician to the late Permian� The number of families falls
several times� but the height of this steps shows a very wide range of values�

David Raup �Raup� ����� used this example to ask the key question� did the
trilobites do something wrong� Were they genetically inferior� Or had they simply
bad luck� Ideally� the answer to this question� which involves the large scale� should
be the result of the rules working at the shorter scale� In such a case� we could
�nd a generalization of the previous equations� perhaps involving noise� and the
observed extinction pattern would be obtained� But can such large�scale events
be included in a generalized version of Lotka�Volterra equations� An a�rmative
answer to this question implies that macroevolution is correctly described from the
lower�scale population dynamics and a reductionist approach would be justi�ed� In
some sense� large�scale evolution �and extinction� could be reduced to the microscale
�Maynard Smith� ������ This view� however� is not shared by all evolutionary
biologists �Eldredge� ������

Figure ��� near here

An important contribution to this problem came from theoretical ecology and is
known as the Red Queen Hypothesis �van Valen� ����� Stenseth and Maynard Smith�
����� Benton� ����b�� This hypothesis maintains that the di�erent species within
a community keep constant ecological relationships to each other� and that these
interactions are themselves evolving� This theory predicts a constant extinction rate
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of species �or other taxa� in agreement with available data� This picture of evolution
implies that bursts of extinction and speciation will happen only in response to
changes in the physical environment�

A key ingredient of macroevolution is� in our view� absent in the LV approx�
imation� the essentially discrete nature of extinction and diversi�cation and the
contingent nature of both processes� Once a species is gone� diversi�cation of the
surviving species will occur� This process will generate new arrangements in the
community structure� which might lead to new extinctions�

In this paper we want to analyse this problem by means of a simple model
of macroevolution� The basic ingredients �extinction� diversi�cation and networks
dynamics� will be included� In particular� we want to stress the existence of higher�
level mechanisms explaining some of the patterns observed in the fossil record� As
we will see� a new interpretation for the extinction pattern is obtained�

� Evolution model

Previous models of evolution leading to critical states have been based in the so
called Bak�Sneppen �BS�� �Bak and Sneppen� ����� or the Kau�man�Johnsen model
�Kau�man and Johnsen� ������ These are oversimpli�ed pictures of evolving ecosys�
tems leading to power laws� However� none of them involve real extinctions nor
diversi�cation� although some alternatives to these models have been explored� See
for instance the niche invasion model of Kau�man �Kau�man� ����� or the modi�
�ed BS model introduced by Newman and Roberts �Roberts and Newman� ������
Recently �Sol� ����� Sol and Manrubia� ����� such ingredients have been explicitly
taken into account in a new model of species interaction� Here we follow this last
approximation�

The Lotka�Volterra equations ��� are too di�cult to manage if � is formed by
time�dependent terms� We want to retain the basic qualitative approach� but our
interest is shifted from population sizes to the appearance and extinction of species�
Here species are assumed to be a binary variable� Si � 
 �extinct� or Si � � �alive��
The state of such species evolves in time �now assumed discrete� according to

Si�t � �� � �

�
nX

j��

�ij�t�Sj�t�

�
���

with i � �� ���� N � Here ��z� � � if z � 
 and zero otherwise� Equation ��� can
be understood as the discrete counterpart of ���� but involving a much larger time
scale� In our model �Sol� ����� Sol and Manrubia� ������ the i�th species is in fact
represented by the set of connections f�ij� �jig� �j� The elements �ij are the inputs
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and de�ne the state of the species� The symmetric elements �ji are the outputs and
represent the in�uence of this species over the remaining ones in the system�

The dynamics is de�ned in three steps�
�i� Changes in connectivity� Each time step we change one connection �ij which

takes a new� random value �ij�t��� �  ��� �!� for each i � �� ���N � with j � f�� ���� Ng
chosen at random� This rule is linked with the internal changes involving the species
interactions� They could be associated with external causes or simply be the result
of small changes as a consequence of coevolution� This rule introduces random�
small changes into the network�

�ii� Extinction� The local inputs Fi �
P

j �ij�t�Sj�t� are computed� and all
species are synchronously updated following ���� If the k�th species goes extinct�
then all the connections that de�ne it are set to zero� that is �kj � �jk � 
� �j� This
updating introduces extinction and selection of species� Those sets of connections
which make a species stable will remain� But in removing a given species� some
positive connections� with a stabilizing e�ect on other species can also disappear�
and the system can become more unstable�

�iii� Replacement� Some species are now extinct �i� e� Sk � 
� and empty
sites are then available for colonization� Diversi�cation then is introduced� A living
species is picked up at random and "copied# in the vacant spaces� The new species
are basically identical to the one randomly choosen� except for a small random
change in all their connections� Speci�cally� let Sc the copied species� For each
extinct species Sj �vacant spaces�� the old connections are set to zero� and the new
connections �ij and �ji are given by �kj � �cj � 	kj and �jk � �jc � 	jk� Here 	 is
a small random variation �we took 	 � 
�
��� In this way� the new species are the
result of the diversi�cation of one of the survivors�

Figure ��� near here

The previous rules can be sumarized in �gure �� where a small ecosystem is
shown� In our previous study� it was shown that the system evolves to a critical
state with power laws in the extinction sizes �i� e� N�s� � s�� � with 
 � �� and
waiting times until extinction� The model shows punctuated equilibrium� as found
in the real fossil record �Gould and Eldredge� ������ But here there is no separation
between "mass# and "background# extinctions� All of them are generated by the
same dynamical process� and no particular extinction size is privileged�

� Criticality and Unpredictability

In this section we want to analyse in which way the critical state is reached and
the interpretation of the resulting dynamical pattern� The random changes in the
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network connections make the trophic links between species more and more complex�
We can quantify their complexity by means of an adequate statistical measure� Let
us �rst consider the time evolution of connections� Let P ���� and P ���� � ��P ����
be the probability of positive and negative connections� respectively� The time
evolution of P ���� t� is de�ned by the master equation

�P ���� t�

�t
� P ���� t�P ��� � ���� P ���� t�P ��� � ��� ���

From the de�nition of the model� we have a transition rate per unit time given by
P ��� � ��� � P ��� � ��� � ����N� and so we have an exponential relaxation
P ���� t� � �� � ��P� � �� exp��t�N����� where P� � P ���� 
�� This result leads
inmediately to an exponential decay in the local inputs� Fi�t� � exp��t�N�� As a
result� the system evolves towards a critical state where the inputs introduced by
the coevolving partners are small and so small changes involving single connections
can generate extinctions�

Figure ��� near here

We can use the entropy of connections per species� i� e� the Boltzmann entropy

H�P ���� t�� � �P ���� t� log�P ���� t��� ��� P ���� t�� log��� P ���� t�� ���

as a quantitative characterization of our dynamics� The Boltzmann entropy �also
known as the Shannon entropy� gives us a measure of disorder but also a measure of
uncertainty �Ash� ������ It is bounded by the following limits� 
 	 H�P �J�� t�� 	
log���� These limits correspond to a completely uniform distribution of connections
�i� e� P ���� t� � � and P ���� t� � 
� with zero entropy and to a random distribution
with P ���� t� � ��� which has the maximum entropy� Our rules make possible the
evolution to the maximum network complexity� here characterized by the upper limit
of the entropy�

As we can see in �gure �� H�P ���� t�� grows� after a large extinction event� to�
wards its maximum value H� � log���� with sudden drops near large extinctions�
So our system slowly evolves towards an "attractor# characterized by a randomly
connected network� At such state� small changes of strength ��N can modify the
sign of Fi and extinction may take place� At this point� one clearly sees what is
the role that external perturbations play� for them to trigger a large extinction� it
is necessary that they act on a system located close to the critical state �here� the
network close to the maximum entropy�� A large extinction will never be found in a
system with a low entropy of connections even with a reasonably large external per�
turbation� This is a key property of SOC systems� More speci�cally� a SOC system
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has an order parameter that de�nes the transition displayed by the system �in our
case the change from no�extinctions to extinctions� as a second order �or continous�
phase transition� This order parameter has been shown to be the extinction rate�
while the control parameter is the average value of the connections � �ij � �Sol and
Manrubia� ������ For � �ij �� 
 no extinction will be found for a large enough
system� while for � �ij �� 
 extinctions of all sizes �up to system size� can be
found�

We can see that a wide distribution of extinctions is obtained� it is a power�law
distribution� N�s� � s�� with 
 � ��
��
�
�� consistent with the information avail�
able from the fossil record �Raup� ����� ����� Sol and Bascompte� ������ This result
also agrees with the Newman�Roberts model� who also obtained the same exponent
within the error �Newman and Roberts� ����� Roberts and Newman� ������ while
other models give values clearly di�erent� 
 � ��� for the BS model and 
 � � for
Kau�man�Johnsen
s�

Figure ��� near here

Other properties can be explored� In particular� we could ask which type of
diversi�cation patterns are present� A direct consequence of criticality� as de�ned
by the previous rules� is the existence of a power law in the taxonomy� If we look
at a given species� it can generate� after an extinction event� one� two or many new
species� and the statistical distribution will be a power law with the same exponent
than before �recall that rule �iii�� replacement of extinct species� copies all extinct
species in a single alive one�� It is interesting to see that available evidence from
the fossil record shows precisely this range of values �Burlando� ���
� ������ In our
case� every time that replacement takes place� we de�ne the new elements to be a
subtaxa of the parent species chosen to be copied�

As an example� we have considered the values of the local �elds at each time
step� Provided that the connections take values between �� and ��� the internal
�elds can theoretically range from �N to �N � though large negative values will
be rarely observed� We divide this interval in N pieces and at each time step we
look at all the species in the system and �nd all the intervals that are occupied at
least by one of them� The time evolution of this is shown in �gure � just after a
mass extinction �where we chose t � 
�� Black dots mean occupied sites� As we can
see the previous rules generate a very complex pattern of diversi�cation followed by
extinctions� Random and ordered domains are observed�
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� The Red Queen revisited

Finally� let us consider the law of constant mean extinction rate� van Valen
s law
�van Valen� ������ As mentioned in the introduction� this law maintains that the
probability of extinction within any group remains essentially constant through time�
This is a consequence of the Red Queen theory and an observational result� This is�
however� an average� on average� extinction rates are constant but a close inspection
of the decay curves shows both continuous and episodic decays �Raup� ������ The
sudden� episodic drops are often associated with mass extinctions and are usually
assumed to be the result of external perturbations�

Figure ��� near here

The Red Queen model gives a striking� counterintuitive explanation of the con�
stant rate of extinction� If organisms are continuously evolving and adapting� why
do they not get any better� on average� to avoid extinction�

The episodic �and apparently external� nature of the species decay is easily
explained by our model� Though long periods of stasis and low extinction rates give
a constant decay� the same intrinsic dynamics generates the episodes of extinction
involving several �some times many� species� These survivorship curves are shown
in �gure � where four runs of our model are displayed� Each graphic is generated
by starting at a given �arbitrary� time step in the simulation and following all the
species present at this time step� The exponential decay in the number of survivors
is closely related to the monotonous drift that the system experiences towards the
extinction threshold� due to the constant change of connections to random values�
As we can see �and this is rather typical� both constant and episodic decays are
observed� We do not need to seek for a special external explanation for the episodic
decay� Obviously� an external cause can trigger a large extinction event by altering
the network dynamics at the critical state�

In our approach� the theoretical problems derived from the Red Queen inter�
pretation simply do not arise� Extinctions are an unavoidable outcome of network
dynamics� Though some selection of connections is present after each extinction
event� unpredictability always increases� As with the example of the large blue but�
ter�y� a given species cannot predict how the other players will modify their intrinsic
properties and in particular how the network will be rearranged after a new extinc�
tion� This situation is basically shared by all the players� and so all of them are� on
average� equally prone to disappear in the long run�
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� Discussion

In this paper we have analysed the consequences of a simple model of large�scale
evolution involving extinction and diversi�cation� The model is inspired in the stan�
dard Lotka�Volterra approach but we move from the ecological time scale �where
population changes are relevant� to the paleontological one �where changes in species
composition occur�� In the small scale� deterministic factors are usually dominant�
though some types of unpredictable behavior are present� for instance when deter�
ministic chaos is involved� In the large scale� however� continuous� random changes
in the trophic links move the system towards a critical state characterized by a high
unpredictability and sensitivity to small perturbations� Here is worth emphasizing
that spatial degrees of freedom can play a very important role� Actually� it is well
known that space can stabilize species interactions which� otherwise should not per�
sist �Hassell et al�� ����� Sol et al�� ����� Bascompte and Sol� ������ This situation
allows a given ecosystem to explore a wide range of interactions and� in the long
run� eventually triggered by external causes� extinction can occur�

Because of the intrincate network of couplings obtained at the critical state�
the problem of which species will be gone is essentially unpredictable� Contingency
has been recently aduced as one of the more relevant properties of the evolutionary
process �Gould� ����� and in this paper we give a dynamical origin to this unpre�
dictability� But in spite of the intrinsic contingency of this process� the critical state
is characterized by some well de�ned properties� punctuated equilibrium and power
laws� The �rst �qualitative� property is observed both in the model and in real data�
Punctuated equilibrium is in fact a characteristic feature of the fossil record but it
is also a typical� perhaps generic characteristic of complex systems poised at critical
points �Sol et al�� ������ Power laws are the statistical counterpart of punctuated
equilibrium� The fossil record shows several evidences of scale�free distributions
�Raup� ����� Sol and Bascompte� ����� Sol et al�� ������ Such data sets have not
been interpreted �nor reproduced� by means of classical models of population dy�
namics� The global pattern is emergent� resulting from the generation of complex
correlations among species� This is in total agreement with the conclusions of other
authors� as Gould points out� "paleontologists should conciously explore the ways
in which uncritical extrapolationism limit and channel thought� Evolution works on
a hierarchy of levels� and some causes at higher levels are emergent#�

To sum up� we have shown that our model of large�scale evolution is able to
recover the observed evolutionary patterns� The main consequence of our study is
that the network complexity of a given ecosystem always grows in time leading to
essentially random nets of connections� Trophic links become very intrincate in such
a way that the sensitivity of the system to further changes �both biotic and physical�
becomes maximum� In this sense� the Red Queen picture� where changes are made
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in order to adapt the system to the biotic environment� should be replaced by an
always changing system were species are gone as a consequence of the unpredictable
web of biotic relations� The observed fractal properties of the fossil record would be
a direct result of this unpredictability in the critical state�
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� Figure captions

 �! �a� Proportional rate of extinction as a function of the geologic time �here each
time unit � � Myr� for genera of marine animals during the Phanerozoic �adapted
from Allen and Briggs� ������ �b� Power spectrum P �f� obtained from the previous
time series� It gives a scaling relation P �f� � f�� with � � 
��� � 
�
�� Such a
result is consistent with a scale�free phenomenon �see text�

 �! Decay of families of Trilobita from the early Ordovician to the late Permian�
when they went extinct� We can see a wide set of changes from small extinctions to
very large� as the one occured at the end of the Ordovician period�

 �! An example of the rules used in the evolution model� Here an N � � network
is shown� with a given connectivity �a�� In �b�� two extinct species are shown as
empty circles� At �c�� the last rule �diversi�cation� is applied� The empty sites are
occupied by the species marked by an arrow�

 �! Extinction pattern in the model� Here N � �

 species are used� and a small
time series is shown� together with the entropy� We see that large extinctions takes
place close to high entropies �see text��

 �! Fluctuations in the distribution of inputs Fi �see text�� After a large extinction
�t � 
 in the �gure� diversi�cation occurs �A�� As can be seen� the ordered pattern
is replaced by a more random one� A detail of the �uctuations is shown in B�

 �! Extinction pattern of species over time� The decay of a given initial set of species
�here N � �

� in four di�erent situations is shown �see text�� Both continuous and
episodic decay are observed�
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