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Introduction

Recombination, including chromosomal segregation, shuffles together the genetic ma­

terial carried by different members of a sexual species. This genetic mixing unties

the evolutionary fate of alleles at one locus from the fate of alleles at neighboring loci

and can increase the amount of genetic variation found within a population. In the

process, however, recombination separates advantageous gene combinations, the very

gene combinations that enabled the parents to survive and reproduce. Whether or

not the adaptation of a population to an environment is more rapid in the presence

of recombination, that is, whether or not recombination speeds up the evolutionary

process, depends critically on the ways in which this process is modelled. As we shall

see, the effect of recombination depends on the population size, the initial population

composition, and the selection regime under consideration.

Fisher, in 1930, and Muller, in 1932, both argued that recombination allows fa­

vorable mutants that arise in separate individuals to be combined within the same

genome. This advantage of recombination rests upon three important assumptions.

The first is that favorable mutations do not fix more rapidly than they arise, for,

if they were to p.x more rapidly, then advantageous mutations would not segregate

simultaneously at different loci and recombination would not matter. The second is

that favorable mutations are much less likely to co-occur within an individual through

mutation than through the action of recombination. Finally, for the full impact of

recombination to be assessed, the disadvantage of separating favorable gene combina­

tions must be weighed along with the advantage of combining separate mutations. It

is not obvious that these assumptions are valid. For instance, high rates of mutation

favor concurrent segregation (the first assumption) but they also favor the production

of double mutants through mutation (making the second assumption less tenable).

We briefly discuss some important studies in which this issue has been quantitatively
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addressed.

Maynard-Smith (1968) followed the spread of advantageous mutations in a two

locus model, assuming discrete generations, a large population, and multiplicative se­

lection. He showed that genetic associations (linkage disequilibria) would not develop

in the population if there were no such associations to begin with. Recombination,

however, only affects the dynamics of a population if there is disequilibrium (see

equation 1). Consequently, the presence or absence of recombination was irrelevant

to the evolution of such a population. These results were extended to more general

fitness schemes by Eshel and Feldman (1970). They considered fitness interactions

(i.e. epistasis) between the two loci, as outlined in Table 1. If the fitness of the ad­

vantageous double mutant is greater than the product of the fitnesses of the single

mutants (i.e. supermultiplicative selection), more of the favorable double mutants

would be found in the population without recombination than with recombination.

Essentially, in the supermultiplicative case, more double mutants are present than

expected (positive linkage disequilibrium) and recombination only serves to separate

the advantageous double mutant combination. With submultiplicative fitnesses, the

number of favorable double mutants increases with recombination (see also Karlin

(1973)). The sign of the linkage disequilibrium is critical here: when fitnesses are

supermultiplicative, it becomes positive, while when they are submultiplicative, it

becomes negative. Thus, in an infinite population, the advantage of recombination is

sensitive to the fitness regime.

The preceding arguments have been made in the framework of large populations in

the absence of genetic drift. The Fisher-Muller hypotheses are, however, more appro­

priately addressed by finite population size models (Felsenstein, 1988). For instance,

stochastic effects are important in Muller's (1964) proposal that, in the presence

of mutation to deleterious alleles, recombination would permit the reconstitution of

mutation-free individuals. In an infinite population, the mutation-free class would
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never entirely disappear. It is only in a finite population that this class would be

lost by drift and could then be reformed by recombination (Haigh, 1978; Felsenstein,

1988).

Finite population size has been included in a series of quantitative studies exam­

ining the advantages of recombination. Crow and Kimura (1965) and Bodmer (1970),

used liN as the frequency at which a (haploid) chromosome first appears, where N is

the population size, but these studies assumed that sampling error (random genetic

drift) was negligible. Crow and Kimura (1965) argued that in a population with no

recombination only one lineage would eventually survive, and only those mutations

that occurred in this lineage could possibly increase to fixation. With recombination,

however, all mutations could potentially be incorporated. Using several approxima­

tions, they found that the relative rate of incorporation of new advantageous mutants

may be several orders of magnitude larger with recombination, especially if the popu­

lation size is large. Bodmer (1970), on the other hand, argued that the time until the

most fit chromosome first appeared in the population was shorter with recombination

and that this effect is larger with small population sizes. These results are difficult to

evaluate, however, because the stochastic effects of genetic drift are ignored in both.

Other stUdies have assumed a finite population of constant size in every generation

and have examined the effects of sampling. Hill and Robertson (1966) simulated the

evolution of a finite population assuming a two-locus model with either additive

selection (which, in terms of Table 1, is submultiplicative) or multiplicative selection.

In both cases, they found that selection at one locus reduced the chance of fixation

at the second locus, especially with tight linkage. Increased linkage also increased

the time required for the population to fix. These authors argued that the effective

population size for one locus is reduced by selection on the second locus to the fraction

of the population which carries the favorable allele at the second locus. Although not

a part of their argument, the fact that negative disequilibrium generally developed
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in their simulations meant that the frequency of favorable alleles at the first locus

was lower in that fraction of the population that also carried the favorable allele at

the second locus than in the remaining fraction of the population. Recombination

acts to reduce the linkage disequilibrium between a pair of linked genes reducing the

amount that each interferes with the other's response to selection. This is called the

Hill-Robertson effect.

Assuming equal fitnesses and directional mutation, Karlin (1973) showed analyti­

cally for a population of size two (!) that the time until first appearance of the double

mutant was shorter with recombination, but the time until fixation was longer. A

closer inspection of the time until fixation shows, however, that the dependence of

the fixation time on recombination is very small (on the order of the mutation rate).

Nevertheless, this study suggests that recombination in the absence of selection might

increase the time required to fix mutant chromosomes, a result opposite to that found

by Hill and Robertson (1966) with selection.

Felsenstein (1974) and Felsenstein and Yokoyama (1976) carried out simulation

studies of a finite population under multiplicative selection. They confirmed the find­

ings of Hill and Robertson (1966) and in the second paper extended the results by

including a third locus (a modifier locus) that controlled the rate of recombination

between the two-loci under selection. They found that an allele for free recombination

significantly outcompeted an allele that eliminated recombination. They attributed

this advantage of recombination to its effect of breaking down the linkage disequilib­

rium generated by random genetic drift in the presence of selection.

Recent efforts to use genetic algorithms to solve complicated optimization prob­

lems have generated a great deal of interest among computer scientists in the evolution

of recombination in small populations. Genetic algorithms are procedures invented by

Holland (see e.g. Holland, 1992) that attempt to find the optima of complicated func­

tions using .programs that simulate Darwinian natural selection. Potential solutions
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are treated as strings of symbols that are subject to mutation and may be recombined

with one another to form new strings. The new strings are subject to selection on

the basis of their performance at the task set by the user (Goldberg, 1989; Belew

and Booker, 1991). The role of recombination in these simulations is the subject of

considerable debate, remarkably analogous to the discussions about recombination in

population genetics (e.g. Sumida et al., 1990; Schaffer and Eshelman, 1991).

We have performed a large simulation study that investigates the advantages and

disadvantages of recombination in finite populations with different two-locus selec­

tive schemes. We find that recombination always hastens the first appearance of a

double mutant, but we argue that measuring the time to first appearance is tanta­

mount to measuring the advantages of recombination when recombination cannot be

disadvantageous, that is, when there are no double mutants that may be separated by

recombination. Recombination may either increase or decrease the time to fixation

of the advantageous type depending on the selection regime. We suggest that these

results are best understood in terms of the development of disequilibria and not, as

argued by Hill and Robertson (1966), in terms of the effective population size.

Methods

Consider a finite haploid population of size N. Two loci are both subject to recurrent

mutations between the resident alleles (A and B) and the new alleles (a and b), with

recombination between the two loci at a rate, r. Fitnesses are either equivalent for

all genotypes (neutral) or are specified according to Table 1. We make the further

simplifying assumption that selection is equivalent at the two loci (0"3 = 0"2)'

We assume that the finite haploid population produces an effectively infinite num­

ber of gametes and that these gametes unite at random to produce diploid zygotes
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which immediately undergo meiosis to produce haploid offspring. Selection then acts

to change the proportion of the different offspring genotypes. If Xl, X2, Xs, and X4

are the frequencies of the adult genotypes ab, Ab, aB, and AB then the offspring

distribution after selection (xf) will take the form

WX~ = ud(l - fLB)(l - fLB)Xl + fLF(l- fLB)X2 + fLF(l- fLB)XS + fL}X4

-rD(l - fLF - fLB)2}

Wx~ - u2{(1- fLF)(l- fLB)X2 + fLB(l- fLB)Xl + fLFfLBXs + fLF(l- fLF)X4

+rD(l - fLF - fLB)2} (1)

Wx~ - u2{(1 - fLF)(l - fLB)XS + fLB(l- fLB)Xl + fLFfLBX2 + fLF(l- fLF)X4

+rD(l - fLF - fLB)2}

Wx~ - {(1- fLF)(l- fLF)X4 + fLB(l- fLF)X2 + fLB(l- fLF)XS + fL1 xl

-rD(l - fLF - fLB )2}

where fLF and fLB are the forward and backward mutation rates, respectively, for

both loci, D is the linkage disequilibrium (D = XlX4 - X2XS), and W is the sum of

the right sides. In our simulations, we either ignore back-mutations (fLB = 0) or set

the forward and backward mutation rates equal to one another (fLF == fLB). Finally,

the next generation of N adults is chosen by random sampling from the offspring

distribution described by equation (1). Notice that selection acts on the haploid

juvenile stage in this life cycle, and therefore affects the probability that a particular

offspring may become established as one of the N sampled adults. This sampling

regime is known as the Wright-Fisher multinomial sampling model.

All simulations were started with a population of N adults carrying the AB chro­

mosome (X4 = 1). The offspring distribution was then produced according to (1)

and Wright-Fisher sampling performed to create the next generation. This procedure
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was repeated until fixation of the ab chromosome first occurred. The number of gen­

erations required until the first appearance of the ab chromosome within the adult

population (TA ) and the number of generations to fixation (TF) were both recorded.

Note that with backward mutations, the population never permanently fixes upon

any chromosome, but will fix temporarily if the mutation rate is sufficiently small

(Np.<1).

Results

No selection- Table 2 reports results from simulations without selection. Here, we

are only interested in the case of unidirectional mutation, so that there is a definite

increase in the number of mutant alleles. As can be seen, the time until first appear­

ance of the double mutant always decreases with increasing recombination rate. On

the other hand, the time to fixation shows no clear dependence on the recombination

rate. The analysis of Karlin (1973), however, can be used to show that the time to

fixation should increase with recombination, but that 8TF /8r is on the order of the

mutation rate and decreases in magnitude with r (for N = 2). In order to improve

the accuracy of the results, we repeated the simulations with N = 100 and p. = 0.01

1,500,000 times, as shown in the last column of Table 2. The time to fixation in­

creases when r is small, but shows no clear pattern when r is large; the effect is clearly

minor.

Selection- The results with selection are presented in Tables 3 through 5. Our

discussion focuses on the case of unidirectional mutation (Tables 3 and 4). Results

with bidirectional mutation are completely analogous, as illustrated in Table 5 with

multiplicative selection. Irrespective of the selection regime, both first appearance

and first fixation times are longer with bidirectional mutation.
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The time to first appearance declines with increasing recombination rates, showing

the same qualitative behavior both with and without selection. This result holds for

all population sizes, mutation rates and selection regimes tested (data not shown),

although the effect is sometimes quite small. We have also observed that the time

to first appearance does depend on the fitness of the double mutant. This rather

troubling fact occurs because, in this model, selection acts deterministically on the

juvenile stage of the life cycle but we census at the adult stage and then determine

whether a double mutant is present. Were we to assume that selection occurred only

among the individuals sampled to make the next generation, and to census the adults

before selection, then clearly 0"1 would play no role in the first appearance of the

double mutant.

The time to fixation behaves in a more complicated manner as a function of re­

combination. With submultiplicative selection and multiplicative selection, the time

to fixation always decreases with increasing recombination. These results confirm the

simulation results of Hill and Robertson (1966) and Felsenstein (1974). By continuity,

we expect that recombination will continue to shorten the time necessary for pop­

ulations to reach fixation with sufficiently weak supermultiplicative selection. With

strong supermultiplicative selection, however, our simulations show that recombina­

tion actually increases the time to fixation. We interpret these results in the following

manner. There is a tendency in finite populations to generate more negative linkage

disequilibrium than expected on the basis of infinite population' results. Whereas

linkage disequilibrium becomes negative only for submultiplicative selection regimes

in an infinite population, it becomes negative in finite populations whenever selection

is submultiplicative, multiplicative, or weakly s'upermultiplicative. In fact, it can be

shown analytically (see Hill and Robertson, 1966) that negative disequilibrium de­

velops in a finite population with multiplicative selection. With sufficiently strong

supermultiplicative selection, the positive disequilibrium created by selection is large
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enough to be maintained, despite the tendency for sampling with selection to make

the disequilibrium more negative; in such cases, recombination delays fixation. That

is, there exists some critical region of positive epistasis (an interval, he,,~}, say)

above which recombination increases the time to fixation, and below which recom­

bination decreases the time to fixation. The simulations indicate that for epistasis

within this interval the time to fixation might exhibit non-monotonic behavior with

respect to the recombination rate. For instance, epistasis equal to 'I = 1 appears to

be below 'Ie for populations of size N = 1000 with !1-F = 0.01, but either above or

within the critical region for populations of size N = 100 with !1-F = 0.01 or of size

N = 1000 with !1-F = 0.001 We speculate that this critical region shifts toward zero

as the population size increases (while the mutation rate is held constant), becoming

zero at the limit of an infinitely large population.

Time until appearance of first double mutant - In this section, we outline a proof

that the time to first appearance of the double mutant must decline with increasing

recombination.

The first appearance within the adult population of the double mutant (type ab)

will occur in some generation (n, say) if in all (n -1) previous generations, the ab type

is not present, so that its frequency, Xl, equals zero. It follows that in any generation

before n, the linkage disequilibrium in the population must equal zero or be negative

(D = X1X4 - X2XS = -X2XS ::; 0).

In proceeding from generation k (k < n) to generation k + 1 according to the

Wright-Fisher model, the probability that there is at least one ab type in the k +1th

generation is (pk+l).{ab} .

This is an increasing function of X~k+l), which is computed using equation (1) with
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the stipulation that x~k) = 0:

where W is the sum of the right hand sides of equation (1) with x~k) = O. The

derivative of PI.;\;} with respect to the recombination rate, r, has the same sign as the

derivative of x~k+l) with respect to r, which in turn has the same sign as:

For reasonable values of the parameters (fitnesses greater than the mutation rates),

the derivative of PI.;\;} with respect to r simply has the opposite sign to the disequi­

librium in the kth generation.

The probability of observing ab, as a function of the frequencies in the k(th) gen­

eration, thus has the following properties:

8(PI.t}ID(k) = 0)
0

8r -

8(pk+1ID(k) < 0){.b}
> 0 (3)

8r
8(pk+1ID(k) > 0){.b} < 0

8r

As mentioned above, the disequilibrium is either negative or zero in all generations

before the first appearance of the double mutant. It follows that before the ab type has

first appeared, the probability that there is a double mutant in the next generation is

either higher with recombination or independent of recombination. Thus we expect

recombination to decrease the time to first appearance of the double mutant in any

finite population and in the limit, with an infinitely large population, recombination

will have no influence on the appearance of the first double mutant (which will appear
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within one generation). This argument does not depend on the selection scheme or

the population size.

In short, finite populations with higher rates of recombination will take less time

on average to produce the first double mutant, whether such double mutants are favor­

able or deleterious. This result, however, depends critically on the odd conditioning

involved in the measure of first appearance. In a finite population with mutation,

the expected disequilibrium, conditional on the fact that the first double mutant has

not appeared, must always be negative. Since the observed populations are restricted

to having non-positive disequilibria, the time to first appearance must decrease with

recombination. Thus the time to first appearance is not a very good diagnostic tool

for determining whether recombination is advantageous, because it can only give one

answer.

Multi-locus simulations - The above results can be extended to many loci using

the simulation methods known as genetic algorithms. In such simulations, the fitness

regimes may be quite general. As an example, we consider a twenty locus model

with two alleles (Oj1) at each locus. The fitness of an individual depends on the

number of l's in its genome as illustrated in Figure 1. With this fitness scheme and

starting from a population fixed at all loci on the 0 allele , we find that both the

time to first appearance of a string of alII's and the time to fixation of this string

increases with recombination (Table 6). In this multi-locus case, measuring the time

to first appearance does not restrict the pairwise disequilibria to a non-positive value

so that recombination can slow the appearance of the most fit genotype. Different

results are obtained, however, when the initial proportion of l's is large even though

the initial linkage disequilibrium is zero. When there are an equal proportion of 0

and 1 alleles, recombination hastens both the first appearance and the fixation of

the string of all l's. This indicates that initial allele frequencies, in the absence of

linkage disequilibrium, are also critical in determining whether or not recolJlbination
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is advantageous. We are in the process of extending these multi-locus simulations

to produce a more complete picture of the role of selection and of initial population

composition on the advantages and disadvantages of recombination.

Conclusions

The advantages or disadvantages of recombination depend critically on the kind of

model studied. While we have shown that recombination will always shorten the

time to first appearance of a double mutant in the two-locus Wright-Fisher model, it

mayor may not shorten the time to fixation of this chromosome. In fact, the time

to fixation is particularly sensitive to the assumptions made. Table 7 summarizes

qualitatively the effect of recombination on the time to fixation of a favorable double

mutant in a population that is initially fixed on the non-mutant chromosome. From

our discussion above, it is clear that different results can be obtained if the population

is started in linkage disequilibrium. Roughly, if the population is initially in negative

disequilibrium, the advantage of recombination is increased (or its disadvantage is

decreased). Conversely, if the population commences with positive disequilibrium,

the advantage of recombination is decreased (or its disadvantage is increased).

Our claim is that the behavior of linkage disequilibrium is particularly useful in

determining when recombination might be advantageous. This runs counter to the

views of Hill and Robertson (1966), who said that disequilibrium was not particularly

"illuminating." Remember, however, that an understanding of the development of

disequilibria helped us to predict the existence of a critical region (be, "Y~}) in the

amount of positive epistasis above which TF would increase with recombination. Con­

centration on the effective population size alone, as suggested by Hill and Robertson

(1966), would not have led to such a prediction. It is also more difficult to predict

the role of initial population composition using effective population size as a guide.
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We suggest that both the effective population size and the disequilibrium be used to

interpret models that attempt to explain the advantage of recombination.

Results from simulations similar to those used in the implementation of genetic

algorithms promise to extend our understanding of the role of recombination to more

loci and more general fitness schemes. Using one possible fitness scheme (Figure 1),

we observed that both the time to first appearance and the time to fixation of the most

fit genotype can increase or decrease with recombination depending on initial allele

frequencies. More generally, Bergman and Feldman (1990, 1992) have shown that the

trajectory of a recombination modifying allele in a II).ultilocus system depends strongly

on the shape of the fitness regime. Indeed, there is an increasing body of evidence

(e.g. Forrest and Mitchell, 1991) that the more jagged is the fitness as a function of

the genotypic value, the less advantage there is to recombination in accelerating the

appearance of the fittest type. This aspect of the "recombination question" requires

further study.
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Table 1: Fitness regime. At the two-loci, the mutant alleles (a and b) are advantageous
(0"1,0"2,0"3 > 0) over the non-mutant alleles (A and B). The amount of epistasis is
measured by I b = 0"1 - 0"20"3)'

AB Ab aB ab Epistasis
Supermultiplicative 1 0"3 0"2 0"1 (0"1 > 0"20"3) Positive

Multiplicative 1 0"3 0"2 0"1 (0"1 = 0"20"3) Absent
Submultiplicative 1 0"3 0"2 0"1 (0"1 < 0"20"3) Negative

Table 2: Results in the absence of selection. Each combination of parameters was
simulated 10,000 times (1,500,000 where noted). The time to first appearance of the
double mutant (TA ) and the time to fixation (TF) are given, with their standard errors
in parentheses. Unidirectional mutation occurs at rate jiF in a population of size N.

Recombination T F

Fraction T A T F 1,500,000 reps
N = 100 r = 0.0 10.49 (0.06) 251.50 (1.14) 252.17 (0.09)
jiF = 0.01 r = 0.1 9.54 (0.05) 251.30 (1.15) 252.93 (0.09)

r = 0.2 8.99 (0.05) 253.22 (1.14) 253.09 (0.09)
r = 0.3 8.68 (0.05) 252.60 (1.13) 253.00 (0.09)
r = 0.4 8.35 (0.04) 252.66 (1.15) 253.06 (0.09)
r = 0.5 8.18 (0.04) 254.55 (1.15) 253.09 (0.09)

N -1000 r = 0.0 3.34 (0.02) 434.56 (1.24)
jiF = 0.01 r = 0.1 3.27 (0.01) 435.18 (1.23)

r = 0.2 3.20 (0.01) 434.28 (1.22)
r = 0.3 3.12 (0.01) 433.56 (1.22)
r = 0.4 3.11 (0.01) 434.57 (1.23)
r = 0.5 3.03 (0.01) 432.69 (1.22)

N = 1000 r = 0.0 30.63 (0.18) 2545.62 (11.58)
jiF = 0.001 r = 0.1 24.56 (0.13) 2549.62 (11.41)

r = 0.2 21.73 (0.11) 2553.13 (11.61)
r = 0.3 20.10 (0.10) 2548.06 (11.38)
r = 0.4 18.92 (0.10) 2550.98 (11.61)
r = 0.5 18.14 (0.09) 2573.27 (11.75)
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Table 3: Times to fixation with selection and unidirectional mutation. The population
size is N and the forward mutation rate is fl-F. Each combination of parameters was
simulated 10,000 times. The standard errors for TF are given in parentheses.

Time to fixation (TF)
Recombination N= 100 N = 1000 N = 1000

Fraction fl-F = 0.01 fl-F = 0.01 fl-F = 0.001
r = 0.0 22.43 (0.04) 26.71 (0.03) 36.33 (0.04)

"'2 = 2 r = 0.1 20.96 (0.04) 25.66 (0.03) 31.08 (0.04)
"'1 = 3 r = 0.2 20.29 (0.04) 25.05 (0.03) 30.01 (0.03)

(,=-1) r = 0.3 20.00 (0.04) 24.73 (0.03) 29.45 (0.03)
Submultiplicative r = 0.4 19.80 (0.04) 24.46 (0.03) 29.04 (0.03)

r = 0.5 19.58 (0.04) 24.25 (0.03) 28.93 (0.03)
r = 0.0 15.19 (0.03) 17.32 (0.02) 24.19 (0.03)

"'2 = 2 r = 0.1 14.66 (0.02) 17.26 (0.02) 21.76 (0.02)
"'1 = 4 r = 0.2 14.44 (0.02) 17.21 (0.02) 21.35 (0.02)
(, = 0) r = 0.3 14.38 (0.02) 17.15 (0.02) 21.15 (0.02)

Multiplicative r = 0.4 14.35 (0.02) 17.16 (0.02) 21.10 (0.02)
r = 0.5 14.33 (0.02) 17.14 (0,02) 21.04 (0.02)
r = 0.0 12.35 (0.02) 13.78 (0.02) 19.55 (0.02)

"'2 = 2 r = 0.1 12.10 (0.02) 13.92 (0.02) 18.06 (0.02)
"'1 = 5 r = 0.2 12.04 (0.02) 14.02 (0.02) 17.87 (0.02)
(, = 1) r = 0.3 12.06 (0.02) 14.12 (0.01) 17.81 (0.02)

Supermultiplicative r = 0.4 12.10 (0.02) 14.17 (0.01) 17.84 (0.02)
r = 0.5 12.13 (0.02) 14.22 (0.01) 17.91 (0.02)
r = 0.0 8.10 (0.01) 8.65 (0.01) 12.83 (0.02)

"'2 = 2' r = 0.1 8.14 (0.01) 8.89 (0.01) 12.38 (0.02)
"'1 = 10 r = 0.2 8.18 (0.01) 9.09 (0.01) 12.38 (0.01)
(, = 6) r = 0.3 8.27 (0.01) 9.28 (0.01) 12.44 (0.01)

Supermultiplicative r = 0.4 8.32 (0.01) 9.43 (0.01) 12.54 (0.01)
r = 0.5 8.44 (0.01) 9.56 (0.01) 12.70 (0.01)
r = 0.0 3.87 (0.01) 4.15 (0.01) 6.25 (0.01)

"'2 = 2 r = 0.1 3.94 (0.01) 4.22 (0.01) 6.31 (0.01)
"'1 = 100 r = 0.2 4.01 (0.01) 4.31 (0.01) 6.39 (0.01)
(, = 96) r = 0.3 4.08 (0.01) 4.40 (0.01) 6.47 (0.01)

Supermultiplicative r = 0.4 4.16 (0.01) 4.50 (0.01) 6.52 (0.01)
r = 0.5 4.22 (0.01) 4.61 (0.01) 6.56 (0.01)
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Table 4: Times to first appearance with multiplicative selection and unidirectional
mutation. The population size is N and the forward mutation rate is /IF. Each
combination of parameters was simulated 10,000 times. The standard errors for TA

are given in parentheses.

Time to first appearance (TA )

Recombination N= 100 N = 1000 N = 1000
Fraction /IF = om /IF = 0.01 jlF = 0.001
r = 0.0 3.73 (0.01) 1.78 (0.01) 6.37 (0.02)

f'2 = 2 r = 0.1 3.50 (0.01) 1.77 (0.01) 5.41 (0.01)
f'l = 4 r = 0.2 3.38 (0.01) 1.77 (0.01) 5.12 (0.01)
(or = 0) r = 0.3 3.31 (0.01) 1.75 (0.01) 4.91 (0.01)

Multiplicative r = 0.4 3.23 (0.01) 1.75 (0.01) 4.80 (0.01)
r = 0.5 3.19 (0.01) 1.73 (0.01) 4.69 (0.01)

Table 5: Results in the presence of multiplicative selection and bidirectional mutation.
The population size is N = 100 and the forward and backward mutation rates equal
/IF = jlB = 0.01. Each combination of parameters was simulated 10,000 times. The
time to first appearance of the double mutant (TA ) and the time to fixation (TF) are
given, with their standard errors in parentheses.

Recombination Fraction TA TF
r = 0.0 3.78 (0.01) 22.12 (0.08)

f'2 = 2 r = 0.1 3.54 (0.01) 21.68 (0.08)
f'l = 4 r = 0.2 3.39 (0.01) 21.39 (0.08)
(,=0) r = 0.3 3.32 (0.01) 21.33 (0.08)

Multiplicative r = 0.4 3.23 (0.01) 21.22 (0.08)
r = 0.5 3.20 (0.01) 21.17 (0.08)
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Figure 1: Fitness regime for the twenty-locus simulations. The above function gives
the fitness of an individual according to the total number of 1 alleles at all loci.
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Table 6: Twenty-locus results with fitness specified in Figure 1. In the simulations,
the population size was N = 100, the number of recombination events in the entire
population with 20 loci was set at R, and the number of forward mutations in the
entire population of 20 loci was set at mF = 2. The initial population composition
was 100 strings of 20 loci with the given percentage of l's randomly placed (expected
linkage disequilibrium of zero). Each combination of parameters was simulated 500
times. The time to first appearance Qf the string with all l's (TA ) and the time to
fixation of this string (TF) are given, with their standard errors in parentheses.

Percentage of l's Recombination Number TA TF
R=O 2015.00 (27.15) 2425.46 (29.58)

0% R= 1 2257.10 (36.42) 2650.81 (35.99)
R= 10 3479.76 (73.58) 3865.62 (76.42)
R= 30 3916.70 (88.44) 4072.70 (73.61)
R=O 1776.06 (29.25) 2241.05 (31.22)

10% R= 1 2043.18 (34.23) 2501.68 (37.04)
R= 10 3203.26 (66.28) 3482.26 (65.23)
R= 30 3834.41 (90.66) 4164.34 (85.66)
R=O 756.37 (15.94) 1236.67 (24.16)

25% R= 1 776.64 (23.22) 1207.53 (27.91)
R= 10 880.93 (49.53) 1428.63 (56.26)
R=30 895.49 (57.46) 1355.66 (58.73)
R-O 451.95 (8.15) 881.89 (15.41)

50% R= 1 376.50 (7.28) 793.85 (14.36)
R= 10 223.77 (5.89) 662.56 (14.98)
R=30 155.18 (5.25) 592.22 (14.57)
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Table 7: Summary of the conclusions. Populations are initially in linkage equilibrium
with no mutant alleles. In the absence of selection in finite populations, the increase
in TF with r is very slight and we assume that selection is sufficiently strong to counter
this effect.

Finite Population Infinite Population
Selection TF TF

None i with r . Independent of r
Submultiplicative ! with r ! with r

Multiplicative ! with r Independent of r
Supermultiplicative (-y < Ie) ! with r i with r
Supermultiplicative (, > I~) i with r i with r
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