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Abstract:  During the past few decades, work by evolutionary theorists and 
others on evolution as a form of computation has yielded important insights in 
fields ranging from biology, to computer science, information theory, and 
physics.  Yet this research stream has had relatively little impact on 
evolutionary views of the economy and institutions.  This paper argues that 
this literature offers the potential for advances in the theory and ontology of 
evolutionary and institutional economics.  The paper explores how the 
computational concept of algorithmic search through a “design space” may 
help unify notions of technological, institutional, and economic evolution and 
explain processes of order and complexity creation in the economy.  It further 
shows how computational concepts may strengthen ontological foundations 
by integrating generalized Darwinism and the continuity hypothesis.  Finally, 
the article suggests avenues for future research. 
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1.  INTRODUCTION 

The study of evolutionary theories of change in economies and institutions has 
long been interdisciplinary.  Nelson and Winter’s (1982) work drew on 
economics, organization theory, and made pioneering use of computer 
simulations.  Hodgson’s (2004)  historical survey shows a field drawing from 
evolutionary theory, sociology, history, philosophy, and many other 
influences.  North (2005) integrates institutional theory, cognitive theory, 
complexity theory, and evolution.  And Ostrom (2007) looks to a future that 
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incorporates behavioral economics, behavioral game theory, and experimental 
economics into the broad church of theories and methodologies employed. 

This paper will argue, that there is a further stream of research that can 
make a powerful contribution to evolutionary theories of economies and 
institutions.  That stream, referred to in this paper as “evolution as 
computation”, is in itself interdisciplinary, cutting across biological 
evolutionary theory, theories of computation, mathematics, information 
theory, and physics.  The potential contributions that evolution as computation 
might make to theories of economic and institutional evolution include a 
deeper understanding of the evolutionary process itself, and a common 
framework for understanding the relationship between institutional evolution, 
technology evolution, and economic system evolution.  Furthermore, such a 
perspective may offer a new view on recent debates on the ontological 
foundations of evolutionary change in socio-economic systems and strengthen 
those ontological foundations.  Finally, it offers a new toolbox of analytical, 
computational, and conceptual methodologies for researchers to draw on. 

In section 2 I give a brief overview of the development of the evolution as 
computation research program, and in section 3 I provide a high-level outline 
of some of the core ideas.  Then in section 4 I sketch out how the evolution as 
computation perspective might be applied to institutional and technological 
evolution and co-evolution, and in particular how the concept of evolutionary 
search through design space might provide a useful integrating framework.  
Section 5 explores how such a mapping of evolution as computation onto 
economic evolution might explain key patterns in economic development.  
Section 6 then briefly discusses ontological implications, in particular 
regarding debates on generalized Darwinism versus the continuity hypothesis.  
Finally section 7 offers conclusions and directions for future research. 

2. EVOLUTION AS COMPUTATION (1932 – 2010) 

In his influential 1932 paper, the geneticist Sewell Wright, wrestled with the 
combinatorial problem of a typical genome with 1000 genetic loci with 10 
different allelomorphs each, together yielding 101000 possible genetic 
combinations – a number vastly larger than the estimated number of particles 
in the universe.   How does the evolutionary process explore such a 
staggeringly large space of possibility?  How does it find within that 
staggeringly large space the almost infinitesimally small fraction of 
combinations that could potentially yield coherent, functional designs for 
organisms?  To analyze this problem, Wright proposed a theoretical construct 
whereby each point in the genetic combinatorial set is assigned a value for its 
“adaptiveness” as Wright described it.  This could then be visualized as a two 
dimensional surface, later described as a “fitness landscape” (Dennett, 1995), 
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with peaks and valleys reflecting the environmental fitness of particular 
genomic combinations.  Evolution’s job then was to search that landscape for 
fit genomic combinations. 

Initially Wright’s paper was viewed as a modest methodological advance, 
only later did it come to be appreciated as a major re-conception of what 
evolution is and does.  By framing evolution as a process of search through a 
combinatorial space of possibilities, Wright put evolution into a realm very 
familiar to mathematicians, and later, computer scientists.  To these 
researchers, the problem of evolutionary search across a fitness landscape 
looked like a form of optimization problem, where evolution was a process of 
search for maxima in a dynamically changing, high dimensional space.  
Mathematically, the fitness landscape problem shared features with multi-
dimension function optimization problems, combinatorial optimization 
problems, Hamilton Path problems, Hopfield networks, map coloring 
problems, energy minimization, and spin-glass problems in physics (Kauffman 
1993, Flake 1998). 

These similarities were not merely coincidental as all of these problems 
either are, or have the potential to be, what mathematicians call NP-complete 
or NP-hard problems (Karp, 1972) – that is the time it takes any known 
algorithm to find a solution to the problem or locate a global optima rises 
rapidly with the size of the problem.  The classic example is the Hamilton Path 
or travelling salesman problem where the problem is to find the shortest 
itinerary for a salesman travelling through n cities, stopping in each city once, 
and beginning and ending in the same city.   A 5 city tour has 12 possible 
solutions, a 10 city tour has 181,440 possible solutions, and a 15 city tour 4.36 
x 1010 solutions.  Thus Wright’s paper put evolution in the same mathematical 
family as these difficult search problems. 

This led to attempts to use computers to algorithmically evolutionary 
search and DeJong (2006) cites Friedman (1956) and Friedberg (1959) as the 
two earliest instances of evolutionary computation.  This then led to 
pioneering work in the 1960s and 70s by figures such as Rechenberg (1965), 
Fogel et. al. (1966), and Holland (1962, 1967, 1975) and the birth of the field 
of evolutionary computation. A broad literature developed on genetic 
algorithms, genetic programming, artificial life, and related methods, with 
applications ranging from communications routing, to circuit design, drug 
design, stock picking, machine learning, and artificial intelligence (see Koza 
1992, Levy 1992, Whitley 1993, Mitchell 1996, and DeJong 2006 for 
examples).  Within this literature, Darwinian approaches to evolution were 
simulated and analyzed, but viewed merely as one branch of a family tree of 
possible evolutionary search algorithms that also included simulated 
annealing, various hill climbing approaches, and wide variety of genetic 
algorithms. 
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Initially the field was concerned with developing algorithms and 
programming techniques “inspired” by biological evolution for the purposes 
of finding good solutions to difficult search and optimization problems.  But 
another branch of the field began to consider the possibility that if evolution 
was able to be simulated on computers, then in a deep sense, following the 
work of Turing (1931), evolution itself was a form of computation.  Holland’s 
(1975) book provided a formal framework for unifying a computational view 
of evolution across both natural and artificial systems.  In the 1980s and 90s 
the computational view of evolution began to be connected with emerging 
work on complex systems, and self-organization (Kauffman, 1993), as well as 
rooted in fundamental work on dissipative thermodynamic systems by figures 
such as Erwin Schrödenger (1944) and Ilya Prigogine (1967),  as well as von 
Neuman’s (1966) work on self-replicating systems and cellular automata, and 
the physics of information (Percus, Istrate, and Moore 2006, Bais and Farmer, 
2007).  This led to a further interpretation of evolution as a bootstrapping 
algorithm that uses free energy to create order in complex systems. 

Over the past decade, this computational perspective began to link with 
mathematical work on the dynamics of evolutionary systems and the modern 
neo-Darwinian synthesis, to create an abstract theoretic, computational, and 
analytic framework that in the 1980s and 90s began to be applied back to 
biological evolutionary systems.  Landweber and Winfree (1999), Crutchfield 
and Schuster (2003), and Nowak (2006) provide examples of applications of 
evolution as computation in natural systems.  This work has led to productive 
insights on topics ranging from macroevolutionary dynamics, to speciation, 
mutation, punctuated equilibrium, evolutionary drift, genome architecture, and 
even attempts at predictive biology. 

Computational approaches to evolution have also had some impact on the 
study of socio-economic systems, primarily through the use of genetic 
algorithms as a method for simulating agent behavior and strategy search. 
Genetic algorithms were first applied in this context in the late 1980s by Brian 
Arthur, John Holland and their collaborators with the “Santa Fe Artificial 
Stock Market” (Arthur, 1995, Arthur et. al. 1997).  Since then, genetic 
algorithms have been applied in a wide number of agent-based models 
(Tesfatsion and Judd, 2006, Epstein, 2006), game theory models (Lindgren 
and Nordahl, 1994), and other economic applications such as data mining for 
finance (Bauer, 1994). 

While this work has been methodologically interesting, there has been no 
general attempt to apply computational theories of evolution to theories and 
ontologies of economic and institutional evolution.  Searches of the main 
journals publishing evolutionary economic and institutional work yielded no 
hits for foundational citations in the evolution as computation literature (e.g. 
Holland, 1975), and very few hits for terms such as “evolution + computation” 
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and “evolution + algorithm”, and those found generally addressed the use of 
computational techniques in modeling (e.g. Safarzynska and Bergh, 2009) and 
not the theoretical or ontological implications.2  Frenken (2006a and 2006b) 
explores the implications of evolution as computation for technology 
evolution and addresses organizational evolution, but does not attempt a 
broader link to theories of economic evolution.  Potts’ (2000) work on 
microeconomic foundations of evolutionary economics touches on many of 
the themes raised by evolution and computation, in particular the evolution of 
complexity, and cites some of the literature, but he does not frame his theory 
in computational terms. Nor do recent survey volumes (e.g. Witt, 2008, 
Hannappi and Elsner, 2008) grapple with this perspective.  The remainder of 
this paper will attempt to fill that gap. 

3.  ALGORITHMIC SEARCH AND THE CREATION OF ORDER 

The evolution as computation view starts with neither biology, nor a broad 
view of biology and culture.  Rather it starts with a perspective that evolution 
is a form of computation.  We can begin with the notion that evolutionary 
processes are algorithmic processes, an idea that is by now well established in 
both evolutionary and computational theory (Holland 1975, Dennett 1995, 
Landweber and Winfree 1999) and firmly locates evolutionary theory within 
the theory of computation. 

3.1 Evolution as algorithm 

An algorithm can be defined as a process that takes some set of inputs, 
manipulates those inputs in a sequence of steps according to a set of rules, and 
then produces a set of outputs.  A baking recipe for example fits this definition 
(e.g. input flour, eggs, butter, sugar, baking powder; stir together well; bake at 
175 degrees Celsius for 30 minutes; allow to cool; then output one cake).  
Dennett (1995) uses the example of a tennis tournament where one inputs 
players, grinds them through a set of rules for advancing to quarter finals, 
semi-finals, etc., and then outputs a result:  the winner.  But as Dennett notes, 
a tournament process is a fairly generic kind of algorithm, it can be used 
equally well for golf, soccer, or tiddlywinks, as it can for tennis.  Dennett 
refers to such algorithms as “substrate-neutral” as the algorithm can run in a 
variety of environments and operate on a variety of types of inputs – what 
defines the algorithm is the rule-set inside it, not the particular substrate it 
works in.  A computer software program is an example of a substrate-neutral 
algorithm. 

 

2 The journals searched were the Journal of Institutional Economics, the Journal of Evolutionary 
Economics, and the Journal of Economic Methodology. 
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The link to computation comes from the pioneering work of Alan Turing 
(1936) who formally defined algorithms and the notion of a “universal 
computer” (sometimes referred to as a “Turing machine”).  In essence Turing 
created a general theory of computation that does not need to run on what we 
conventionally think of as a computer.  While in practice it may be difficult to 
get Microsoft Word to run on anything other than your laptop, it is not 
impossible – for example, in the 1980s a group of MIT students built a digital 
computer out of Tinkertoys that played tic-tac-toe, though it was the size of 
several refrigerators and not very fast.  It has also been shown that biological 
DNA is a substrate that computes in a literal, Turing sense.  Adleman (1994) is 
the first example of an experiment where DNA molecules were artificially 
“programmed” to compute, solving a seven city Hamilton Path problem and 
doing so extremely efficiently. 

One can likewise think of biological evolution as a computational 
algorithmic process that runs on the substrate of DNA and the other chemical 
machinery of biological organisms, but evolution itself is a more general 
substrate-neutral algorithm.  Indeed there is a large literature of researchers 
exploring the computational properties of evolution abstracted from its 
biological instantiation (e.g. Holland 1975, Koza 1992, Mitchell 1996, 
Landweber and Winfree, 2002, Crutchfield and Schuster, 2003, Nowak, 
2006).  

If we thus classify evolution as a member of the general class algorithms 
that can run on any Turing machine, it then follows to ask what kind of 
algorithm it is?  There are many kinds of algorithmic processes – optimization 
algorithms, compression algorithms, error correction algorithms and so on.  
Following Wright (1932) and the subsequent literature, evolution can be 
characterized as a form of search algorithm that recursively explores a 
combinatorial problem space seeking out solutions that are more fit than 
others according to some notion of fitness (a concept we will return to).  
Evolution is not the only form of search algorithm (e.g. matching routines for 
searching databases), nor is it the only algorithm that iteratively searches 
combinatorial problem spaces across a fitness surface (e.g. hill-climbing and 
simulated annealing algorithms).  Rather we can identify it as a particular form 
of search algorithm that uses the Darwinian operators of variation, selection, 
and replication to search a design or problem space as discussed in the next 
section. 

3.2  Searching design space 

What distinguishes evolutionary algorithms from other search algorithms are 
the characteristics of the problem space they search, and the method by which 
they search them.  Dennett (1995) characterizes evolution as an algorithm 
suited for finding “fit designs.”  A “design” has a purpose, e.g. the purpose of 
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the design for a chair is to comfortably support a human being in a sitting 
position.  One can also think of a design as solving a problem, e.g. the design 
of an Eames chair is a candidate solution to the problem of comfortably 
supporting a human in a sitting position.   As long as there is a variety of 
candidate designs, some designs will inevitable by more “fit for purpose” or 
“solve the problem better” than other designs.  An Eames chair might for 
example be perceived by a user as more comfortable and more attractive than 
an alternative chair design and thus more fit for purpose and a better solution 
to the sitting problem.  While purpose of human designs is then to fulfill 
human needs (Georgescu-Roegen, 1971), the purpose of designs created by 
biological evolution is simple – to survive and reproduce in their environment.  
There are a near infinite variety of possible designs that fulfill this purpose, 
ranging from a bacterium to an elephant.  But as Dawkins (1976) points out, 
any biological design that did not fulfill this purpose would by definition 
disappear.  Another way to think of it is that a tree frog is a candidate solution 
to the problem of surviving and reproducing in its particular environment, and 
its very existence is ipso facto proof that it was a successful solution to that 
problem at a point in time. 

For any design there are variants of that design that may be better or worse 
at fulfilling the design’s purpose or solving the problem.  What constitutes 
“better or worse” is referred to as the fitness function and may contain any 
number of dimensions.  For example the fitness function for the design of a 
chair might include dimensions of comfort, attractiveness, cost, durability, and 
so on, while the fitness dimensions of a tree frog might include metabolic 
efficiency, hopping distance, effectiveness of camouflage, and so on.  The 
source of the fitness function is the environment into which the design is 
physically rendered.  A design variant for a tree frog might be rendered into a 
rainforest environment of food sources, predators, habitats, etc. that shape its 
fitness function.  A design variant for a chair might be rendered into an 
environment of people sitting on it, deciding whether they like it or not, 
whether to buy it or not, whether to use it or not, and so on.  Fitness functions 
are dynamic and change over time as the environment changes, and there is 
dynamic feedback or co-evolution between designs and the fitness function 
generated by their environment.  

In the computational conception of evolution it is important to 
conceptually separate the design of a thing from the thing itself (what Dopfer 
and Potts, 2004, call the first axiom of evolutionary realism “all existences are 
bimodal matter-energy actualizations of ideas”).  A design exists as 
information while a rendering of the design exists in a physical environment.  
For example the information for the design of a chair might be captured in a 
blueprint and a set of instructions for making the chair – such encoding of 
design information can be referred to as a schema (Holland 1975, 1995, 
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Mitchell, 1996).  A chair itself is then a physical rendering of the design 
encapsulated by the schema.  And while all physically rendered designs are 
actualizations of ideas, it does not follow that all ideas or possible schema are 
or can be actualized.  The set of chair designs that can possibly be physically 
rendered under the laws of physics is a subset of the set of all possible chair 
designs.  The set of physical instantiations of chair designs that will ever be 
rendered in the lifetime of the universe is then a further subset of that.  This 
definition applies not just to artifacts but to other forms of design as well.  The 
design for a shiatsu massage can be encoded in a set of instructions and then 
rendered by someone providing such a massage.  We can even make this 
separation between schema and physical rendering for things that are purely 
information themselves.  For example one can create a schema for a possible 
computer code, but until it is run on some sort of Turing machine (which is 
subject to the laws of thermodynamics) it cannot be considered to be 
physically rendered. 

The physical rendering of a design into an environment is sometimes 
referred to as an interactor (Hull, 1988).  It is the physical rendering of the 
design that interacts with the environment and is subject to fitness pressures, 
not the design itself (though this is not to imply that the unit of selection is the 
interactor itself, units of selection tend to be modules of design within 
schema).  Interactors can be composed of matter and energy (e.g. an organism 
in biology) or can be information themselves (e.g. in a genetic algorithm the 
schema may code for a bit string that is then subject to selection pressures – 
this is a physical rendering as well because the computational operations 
require energy). 

The process of translating from the information world of design encoded 
in schema into the physical world of interactors is an often overlooked aspect 
of evolution, but it shapes important characteristics of the process.  In order 
for a design to be rendered there must be a schema-reader/interactor-builder to 
do the rendering (for simplicity I’ll refer this concept as a reader/builder).  In 
the biological world, for mammals the reader/builder is a female womb, for 
birds, fish, and amphibians it is an egg – both render from the schema of DNA 
into an interactor organism.  For a chair the reader/builder might be a 
carpenter, for a shiatsu massage it might be a masseuse.  The need for a  
reader/builder has two important implications: 

First, the schema does not have to capture all of the information in the 
design, only enough so that the design can be reliably rendered by the 
reader/builder.  The design for a chair has to only be detailed enough for a 
qualified carpenter with the right tools and materials to build it.  The design 
for a mouse encoded in mouse DNA only has to be sufficient to be rendered 
by a female mouse womb into a baby mouse.  This implies significant 
knowledge and design in the reader/builder, and one can then ask where this 
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knowledge and design comes from.  The answer of course is that 
reader/builders are the result of evolutionary processes themselves.  In biology 
schema code for interactors who also serve as reader/builders (the reading and 
building is part of the design), giving biological evolution its bootstrapping 
character.  In other substrates, the reader/builder may be the product of 
multiple evolutionary processes, e.g. the carpenter’s ability to serve as a 
reader/builder for chairs may be the product of evolution across biological, 
technological, and social substrates.  We will discuss the role of 
reader/builders in economic, technological, and social substrates further in 
Section 4. 

Second, as reader/builders must exist in the physical world, they are 
subject to physical constraints.  This means, as mentioned previously, that 
there are designs that cannot be built.  There are chair designs that violate the 
laws of physics, or cannot be built with the knowledge and technology of the 
reader/builder that exist at a point in time.  Likewise, there are DNA variants 
for a mouse that cannot be built and will be miscarried by the female mouse’s 
womb.  This means that while the space of renderable chair and mouse designs 
may be astronomically large, it is nonetheless finite (Beinhocker, 2006, pp. 
233-235).  The bounds of this finite space may change over time, however.  
As technology changes, the space of possible chair designs the carpenter can 
render may also change.  As the designs for female mice evolve, what their 
wombs can and cannot render will also shift.3 

The total set of renderable designs can be referred to as a “design space”.  
The size of a design space depends on two factors:  the number of modules or 
dimensions that the design can be varied on, and the number of possible 
variants for each of those modules or dimensions.  Design tends to be 
characterized by modularity (Holland 1995, Arthur 2009) with modules and 
sub-modules, and sub-sub modules.  E.g. a chair has arms, and the arms in 
turn might be made of various pieces of wood, metal, or material.  The number 
of possible variants of a design rises exponentially with the number of 
modules, sub-modules, etc. and number of possible variants on each of those 
components.  Thus the number of possible variants of even a simple design 
tends to be very large.  For designs of even modest complexity the number of 
possible designs, though finite, exceeds the number of particles in the universe 
(Dennett, 1995).  Thus for most design spaces, only a very small subset of 
possible designs will ever be rendered.  The number of chairs ever built will 
be infinitesimally small versus the number of possibilities. 

 

3 While the bounds of a space of renderable designs may grow over time, the space can never 
become infinite due to basic physical limits on information processing.  The schema itself must be 
finite (no female mouse womb could process an infinitely long piece of DNA in finite time), and 
therefore the number of possible schema variants encoded in any computable language must also 
be finite (Beinhocker, 2006, pp. 233-235). 
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What the algorithm of evolution is particularly good at is searching such 
almost-infinite spaces of possible designs for designs that are fit for their 
purpose.  The operation of the algorithm in this search process is remarkably 
simple – it is the familiar Darwinian mechanism of variation, selection, and 
replication.  A mechanism exists for creating a set of variants on a design and 
those variants are rendered into physical interactors by reader/builders.  The 
interactors interact with their environment (which includes other interactors), 
and in the course of those interactions, are subject to selection pressures from 
the fitness function.  There then exists a mechanism for increasing the 
probability that designs with relatively higher fitness are rendered, and 
decreasing the probability that designs with relatively lower fitness are 
rendered.  The frequency of relatively fitter designs thus increases in the 
population of interactors, or alternatively, the share of matter and energy 
devoted to relatively fitter designs increases (Beinhocker, 2006, p. 291). 

What the evolutionary algorithm is doing in this process is iteratively 
sampling sub-sets of design space in a search for relatively fit designs.  
Mathematically it can be shown that the evolutionary algorithm is particularly 
good at this sampling process, and adept at finding fit designs in design spaces 
where the fitness function is rough-correlated (Kauffman, 1993, 1995, pp. 
161-189).  A fitness function is rough-correlated if small variations from high-
fitness designs are also likely to have high-fitness, and small variations of low-
fitness designs are also likely to have low fitness.  If there was a perfect 
correlation between fitness and variation distance, the design space would 
have a single global optima and a simple hill-climbing algorithm would find 
that optima more efficiently than an evolutionary algorithm.  In contrast, if 
there was no correlation, the relationship between fitness and design would be 
random, and a simple random sampling of the space would outperform 
evolution.  A design space with a rough-correlated fitness function is most 
effectively searched by a mixture of variation sizes across the dimensions of 
the fitness function – applying small variations on dimensions where there is 
high fitness (preserving and fine tuning successful design features), but 
occasionally introducing larger variations to prevent getting stuck on local 
optima, and applying still larger variations where fitness is low (if a design 
feature is not working, try something else).  A remarkable characteristic of the 
evolutionary process is that it self-tunes to the shape of a rough-correlated 
fitness function to find an effective mix of variation distance.  This is property 
of evolution is explored mathematically by Kauffman (1993) in his N-K 
model, and by Holland (1975, 1995) in the two-armed bandit problem (see 
Mitchell 1996, pp. 117-125 for a discussion and proof of the two-armed bandit 
problem). 

More recent explorations of the mathematical properties of fitness 
landscapes have yielded some intriguing insights.  For example, Crutchfield 
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(2003, pp. 101-134) attempts to explain key macro features of evolutionary 
processes, such as metastability, drift, neutral evolution, punctuated 
equilibrium, and epochal change.  He shows how topological features of high 
dimensional fitness landscapes such as sub-basins of attraction and “portals” 
(structures connecting sub-basins) may explain these stylized facts.      

3.2 How evolutionary search creates order 

With evolution viewed as a form of substrate-neutral search algorithm we can 
then move on to another key point raised by the evolution as computation 
view –evolutionary algorithms are recipes for creating order from disorder, 
and complexity from simplicity.  One of the most striking empirical features 
of both the biospehere and human society is that each has generated growing 
order and complexity over time.  The arc of biological history extends from 
the first single-celled prokaryotes to the massive complexity and variety of the 
Earth’s biota today.  Likewise, the arc of the human history is one of 
increasing technological  and social order and complexity.  Human technology 
has evolved from stone tools to spacecraft, and human institutions from 
hunter-gatherer troupes to multinational corporations.  One measure of this 
increase in order and complexity is the variety of products and services in the 
economy.  Beinhocker (2006, pp. 8-9) estimates the number of unique 
products and services in the economy has grown from on the order of 102 circa 
15,000 years ago to 1010 today – a number higher than many estimates of 
biological species variety.  The increase in order and complexity in both 
biological and human social systems has not occurred monotonically (i.e. the 
biosphere has experienced mass extinctions, and human civilizations have 
collapsed as well as grown), but that it has occurred is beyond doubt. 

Mainstream neoclassical economics has largely ignored the obvious 
empirical fact of increasing technological, social, and economic complexity 
and offers little explanation for it (even so-called endogenous theories of 
growth, e.g. Romer 1990, locate the process for variety creation outside of 
economic theory). But a variety of scholars from other traditions have 
addressed this fact in various ways.  Schumpeter (1934) locates the source of 
novelty and order creation in the acts of the entrepreneur.  Hayek wrestled 
with the question of economic order (1948) and eventually came to 
explanations of self-organization and evolution (1960, 1973, 1988).  However, 
the two social scientists who have come closest to the evolution as 
computation perspective on this question are Simon (1996) who examined 
order in both human artefacts and social structures and proposed an 
evolutionary process in the interaction of human cognition with the 
environment as an explanation, and Georgescu-Roegen (1971) who saw the 
working of an evolutionary algorithm as the only possible explanation for the 
observed increase in order in the economic system. 
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Georgescu-Roegen’s fundamental insight that “the economic process 
materially consists of the transformation of high entropy to low entropy” fits 
very well with modern understandings of order and evolution.  In modern 
physics, entropy and information are viewed as two sides of the same coin 
(Haken 2000, Bais and Farmer 2007).  As the evolutionary algorithm does its 
work it reduces informational entropy as it discovers more complex designs 
over time in the design space, and reduces physical entropy as it uses that 
information to order matter and energy as the reader/builder renders the 
design.  Evolutionary theorists point out that evolution does not have a 
direction, but it does have a tendency. As environmental niches fill-up and 
competition increases in a world where resources are finite at any particular 
point in time, there is pressure to search new regions of design space, and new 
regions of design space are opened up by the re-combination of modules into 
new systems (which then become sub-systems for larger systems) and 
additions of new functions thus creating designs of growing complexity 
(Holland 1995, Arthur 2009).  Again, the process is not monotonic and as 
niches collapse there can also be a collapse back towards favoring simpler 
designs, but the process of niche construction tends to drive the appearance of 
designs of increasing complexity.  The spontaneous, self-organized reduction 
in physical and social entropy observed in the economy, and the use of energy 
inputs and creation of waste outputs in that process, are the hallmarks of an 
evolutionary algorithm at work – in fact we know of no other process that 
produces these results.   

3.3 A generic computational view of evolution 

Abstracting from the evolution as computation literature, we can identify the 
general set of conditions that a system must have for an evolutionary search 
algorithm to operate (this set from Beinhocker, 2006, pp. 213-216, Stoelhorst, 
2008 provides an alternative but largely compatible set derived from the 
requirements of causal logic rather than the requirements of computation): 

■ There must be a combinatorial design space of possible designs; 

■ It is possible to reliably code and store those designs into a schema; 

■ There exists some form of schema reader/builder that can reliably decode 
schemata and render them into interactors (schemata may encode for their 
own reader/builders); 

■ Interactors are rendered into an environment that places constraints on the 
interactors (e.g. laws of physics, competition for finite resources); 
collectively the constraints create a fitness function whereby some 
interactors are fitter than others; 

■ Interactors collectively form a population; 
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■ There is a process of schema variation over time, this can be 
accomplished by any number of operators (e.g. crossover, mutation); 

■ There is a process of selection acting on the population over time 
whereby less fit interactors have on average a higher probability of being 
selected for operations of removal from the population; 

■ There is a process of replication whereby more fit interactors have on 
average a higher probability than less fit interactors of being selected for 
operations of replication or amplification; 

■ The combination of these processes operates recursively. 

This generic checklist could apply equally well to a genetic algorithm running 
on a computer, children playing a game with LEGO blocks (Beinhocker, 
2006,192-198), biological evolution, or as will be discussed in the next 
section, human social evolution. 

4.  EVOLUTIONARY SEARCH IN THE DESIGN SPACES OF THE 
ECONOMY 

The next step then is to ask how this generic, computational perspective might 
map onto the evolutionary processes of human social systems, specifically 
economic systems.  The purpose of presenting this sketch is not to argue that 
this is the only such possible mapping.  Rather it is to encourage research in 
this area by demonstrating that such a mapping, however imperfect, is 
conceptually possible. 

Following the generic template described in Section 3.3 we first need a 
design space or spaces.  In the following section I propose that there are three 
design spaces that are relevant to economic evolution:  physical technologies, 
social technologies, and business plans.  In Section 4.4 I will describe how the 
evolutionary algorithm searches those spaces. 

4.1  Physical technologies  

While the term physical technologies is borrowed from Nelson (2003, 2005) 
and shares its spirit, I offer my own definition which also builds on the notion 
of techniques in Mokyr (1990, 2000) and Ziman (2000): 

Physical technologies (PT) are methods and designs for transforming 
matter, energy, and information from one state into another in pursuit of a 
goal or goals  

PTs are the methods and designs for what we commonly think of as 
technologies, e.g. ox-drawn ploughs, float glass, microchips,  Some PTs result 
in the creation of an artefact (e.g. a stone hand axe) while others result in the 
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provision of a service (e.g. the methods and designs for a Shiatsu massage).  
PTs are encoded in schema via natural language, equations, blueprints, 
diagrams (all of which can be translated to bit strings) stored in individual 
minds, documents, computer disks, stone tablets, and so on.  These schema are 
then rendered by reader/builders into physical artefacts and experiences which 
then become interactors in their environment (e.g. a design for a bridge is 
turned into a physical bridge by a team of engineers and builders).  The PT 
schema do not need to contain complete descriptions of the methods and 
designs, but rather just enough information to enable a qualified reader/builder 
to render the design into the physical environment.  Thus an engineer is able to 
oversee the building of a bridge with the inherently incomplete knowledge 
contained in blueprints, specifications, in the minds of her colleagues, etc.  
There is also a process of co-evolution between schema and reader/builder – 
as the engineer experiences more bridge designs her ability to render different 
parts of the design space will change.  This is not unique to human-social 
evolution, as Dennett (1995) notes and discussed in the previous section, in 
biology, female eggs and wombs (schema-readers) co-evolve with the DNA 
(schema) that they read.  As with other design spaces, the space of possible 
PTs is finite at any point in time, but may expand (or shrink) over time as new 
physical principles are discovered and functionally captured in PTs and 
variations in currently possible PTs create the potential for newly possible PTs 
(Arthur, 2009) – for example the capture of physical principles that enabled 
creation of the laser, variations of which then led to the possibility of the CD 
player, and which variations of which then led to the possibility of the DVD 
player. 

By defining PTs as a process of state transformation, we inherently cast 
PTs in a computational framework.  Algorithms are in essence state 
transformation machines 

4.2  Social technologies 

The second design space is social technologies.  Again, the term and spirit are 
borrowed from Nelson (2003, 2005) but it is useful to define the term 
specifically for our purposes: 

Social technologies (STs) are methods and designs for organizing people 
in pursuit of a goal or goals. 

Examples of STs might include a hunting party, just-in-time inventory 
management, or the M-form organization.  STs are related to institutions 
following North’s (1990) definition of institutions as “rules of the game” but 
STs are intended to be broader.  For example, the STs of a soccer team might 
include not just the rules of the game, but also the job description of the 
goalkeeper, the cultural norms of the team, and whether the team fields three 
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strikers at the front or some other configuration.  As with PTs we can imagine 
schema to encode the methods and designs (e.g. a manual on good soccer team 
design, strategy diagrams, discussions with experienced players), a larger than 
the universe design space of all currently possible ST schema, and a qualified 
schema-reader (e.g. a soccer coach) to render the design into an interactor (e.g. 
the soccer team) in the environment. 

Once again, the notion of state transformation is inherent to this definition.  
The notion of “organizing people” has implicit in it the transformation from 
one state of social interactions, relationships, behaviors, and beliefs to another, 
and a state is deemed more or less “organized” by its fitness for some purpose.   

Much of human history can be viewed as a co-evolutionary process 
between PTs and STs.  In both military and scientific history there are 
numerous examples of innovations in physical technologies leading to 
innovations in social organization and vice versa.  In economic history there is 
also a strong co-evolutionary interplay between physical and social 
technologies.  For example the physical technologies of the Industrial 
Revolution inspired social technology innovations in creating large scale 
factories, and financial markets capable of concentrating large amounts of 
capital, which in turn spurred further innovations in physical technology. 

4.3  Businesses as interactors and business plans as schema  

PTs and STs can encompass designs in pursuit of a wide range of goals, 
including political, military, and religious.  If our objective is to explain 
patterns of economic change, it is then useful to describe a third design space 
that binds PTs and STs together more narrowly in interactors that pursue 
specifically economic goals.  Under this set-up we can define a “business” as: 

A business is a person, or an organized group of people, who transform(s) 
matter, energy, and information from one state into another with the goal of 
making a profit. 

Businesses as defined in this way serve as the interactors in the economic 
system (Hodgson and Knudsen, 2006).  Though I’ve used the term “business” 
rather than Hodgson and Knudsen and other’s use of the term “firms” to allow 
for the fact that firms may be supersets of businesses in the above definition.  
We can then think of “business plans” (BPs) as schema that code for the 
designs of businesses, e.g. IBM can be said to have a business plan which 
codes for the design of its business (similar in spirit to Hannan and Freeman’s 
1977 “organizational blueprint”).  Again, a business plan does not have to be a 
complete description, nor even written down all in one place, as long as a 
business plan reader/builder (e.g. IBM’s management team) can access the 
necessary information to render the design of IBM into the environment.  And 
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as with PT and ST design space we can have a larger than the universe design 
space of business plans that includes all possible variants on IBM and every 
other business, and in which some of those variants are fitter than others at a 
given point in time.  

Economic evolution is then a process of co-evolutionary search through 
these three design spaces.  As new PTs and STs are discovered and rendered 
they are combined and re-combined into new business plans which are 
rendered into businesses, whose activities then change the PT and ST fitness 
function, leading to changes in the business plan fitness function and so on, 
creating a co-evolutionary dynamic. 

4.4  Evolutionary search by deductive-tinkering 

We can then ask how the evolutionary search process proceeds in these three 
co-evolving design spaces.  Building on Campbell’s (1960) and Simon’s 
(1996) work on the role of cognition in human social evolution, one can make 
a relatively simple proposal.  People pursue goals when searching PT, ST, and 
BP space – a better mousetrap, a better soccer team, or a better IBM.  But it is 
not possible to deductively determine what would constitute a better 
mousetrap, soccer team, or IBM from first principles.  The space of 
possibilities is too vast, the interactors themselves are too complex, their 
interactions with their environment are too complex, and the fitness function 
may only be partially known.  Human designers searching these design spaces 
are then left with no choice.  They can use their powers of logic and deduction 
for as far as they will take them, but then at some point they need to try things, 
tinker and experiment, get feedback from the environment, and try again.  
There is a significant computational economics literature (e.g. Lewis 1985, 
1956, Vellupilai 2005) showing the impossibility of approaching such 
problems from a purely rational deductive standpoint (which in turn provides a 
powerful critique of neoclassical theory). 

  Vincenti’s (1994) study of the development of retractable aircraft landing 
gear provides an example where the engineers and manufacturers involved 
make their best efforts at deductively creating new landing gear designs from 
scientific and engineering principles, but run into the limits of that approach 
and also engage in substantial experimentation or tinkering with existing 
designs.  I refer to this process of combining deductive insight with tinkering 
experimentation as “deductive-tinkering”.  It is the deductive-tinkering 
process of human designers that provides the source of variation in the three 
economic design spaces. 

The process of deductive-tinkering creates options and choices in the 
design process, e.g. “Design A when rendered performed very well in the 
environment, I could try to improve it by making variations B or C.”  



Evolution as Computation:  Implications for Economic Theory and Ontology  

     17 

 

 

Competition amongst designs for finite resources at any point in time then 
provides selection pressures (e.g. functional performance, consumer 
preferences, costs), and choices are then made as to where those resources are 
allocated, thus providing amplification to higher fitness designs and de-
amplifying less fit designs, i.e. more fit designs generally get more money, 
talent, energy, materials, and so on over time.  The process of deductive-
tinkering can occur at multiple levels in the economic system.  It can occur in 
the head of a single individual (e.g. an inventor searching PT space or an 
entrepreneur searching BP space), or it can be a group process (e.g. a 
technology design team, or a management team).  It can also include groups 
arranged across organizational hierarchies (e.g. the regional office generates 
10 potential variants on its current business plan, selects 3 as promising and 
proposes those to the national office which turns the 3 into 5, proposes them to 
the global office, etc.). 

It is important to note that there is nothing in our generic picture of 
evolution as a form of search algorithm in Section 3 that says that the process 
of variation has to be random, or that the process of search cannot involve 
foresight or intentionality.  The question of the role of intentionality and 
foresight in human systems, versus the random-blind nature of biological 
system has long been a point of debate in efforts to incorporate evolution in 
social theory.  The evolution as computation perspective addresses this issue 
in a simple way.  All the evolutionary algorithm requires is some process of 
variety creation that samples the design space –that sampling process may 
differ significantly in different domains. 

As PTs, STs, and BPs, are all defined as designs for transformation 
processes in pursuit of a goal, the evolutionary search through their design 
space quite naturally leads to a result of decreasing local entropy.  Taking 
again Vincenti’s (1994) case of retractable aircraft landing gear, we can see 
manufacturing such gear as involving the transformation of disordered raw 
materials through a series of steps into the ordered artefact of landing gear 
(using energy to go from high entropy to low entropy).  The deductive-
tinkering search for better landing gear led over time to a progression from 
simple wheels affixed to wings designs in the 1920s, to the highly complex 
and sophisticated retractable landing gear of a modern jumbo jet today.  One 
can say that as the fitness function changed (bigger, heavier, faster planes 
required different landing gear), it drove the deductive-tinkering process to 
create new landing gear variants, and select and amplify certain designs based 
on their performance.  The result was landing gear designs that are arguably 
more ordered and lower entropy today than the design in the 1920s (this can 
be tested by measuring the length of maximally compressed bit string required 
to describe each design – or in intuitive terms the blueprints for a 1920s 
landing gear would be simpler and take fewer pages than the blueprints for 
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modern 747 landing gear).  Thus in the process of evolutionary search through 
PT, ST, and BP design spaces we can see the potential for local entropy 
reduction over time. 

Finally, it should be noted that certain inventions can have meta effects on 
the economic evolutionary process itself.  For example, social technology 
inventions such as organized markets, money, and double-entry accounting, or 
physical technology inventions such as the printing press, telephone, or 
computer,  have helped increase the effectiveness and speed of deductive-
tinkering evolutionary search. 

5.  EXPLAINING PATTERNS IN THE ECONOMY 

Although the description in Section 4 is a bare sketch, one can begin to see 
how a general computational view of evolution might map onto a theory of 
economic evolution. Such an exercise holds out the possibility of creating a 
mathematical or computational model of economic evolution, that because of 
its relationship to the more general class of evolutionary algorithm, might 
yield some specific predictions that could be tested (e.g. statistical 
characteristics of change processes).  In principle such a mathematical model 
or simulation could be developed using the tools of evolutionary computation 
(Kauffman, 1993, Mitchell, 1997, Landweber and Winfree, 2002, Crutchfield 
and Schuster, 2003, Nowak, 2006) and the mathematical theory of design 
(Braha and Maimon 1998, Suh 1990).  While there is some debate in 
evolutionary and institutional economics as to the value of more mathematical 
approaches (Nelson 2005), one of the historical critiques of evolutionary and 
institutional economics has been that without a rigorous (i.e. mathematical or 
computational) articulation of theory, it cannot be tested in the same way that 
neoclassical theories can be (despite the generally poor performance of 
neoclassical theory in those tests).  This is not to say that an evolution as 
computation approach to economic evolution would obviate more qualitative, 
descriptive, case-based, and historical approaches – indeed the experience of 
the study of other complex systems (e.g. biology, climate systems) indicates 
the two methods are highly complementary. 

Looking ahead one can posit some hypotheses as to how a program of 
computational-evolutionary research might contribute to institutional 
economics: 

First, literal-computational models of economic evolution might explain 
the explosive increase in per capita income and product and service variety 
that resulted from the Industrial Revolution.  While the historical narrative of 
the Industrial Revolution is well known (e.g. Landes, 1969, Clark, 2007), 
economics offers no satisfactory endogenous theory of this period of dramatic 
economic change.  Neoclassical theory cannot offer such an explanation as the 
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Industrial Revolution was a profoundly disequilibrium phenomenon.  
Evolutionary systems, however, can and do undergo such periods of explosive 
growth in scale, order, variety, and complexity.  Mathematical and 
computational explorations of the evolutionary process locate potential causes 
of such phenomenon in the shape and structure of fitness landscapes and 
dynamics of co-evolutionary interactions (Kauffman, 1993, Landweber and 
Winfree, 2002, Crutchfield and Schuster, 2003).  In the case of the Industrial 
Revolution, analyzing the co-evolutionary dynamics between physical and 
social technologies would potentially enrich our understanding of the role that 
institutions played in that transition. 

Second, new explanations might be found for the distributional patterns of 
firms (e.g. revenues, numbers of employees, assets) and patterns of firm 
performance over time (e.g. entries and exits, growth rates, profitability, 
returns).  Again, mathematical and computational research shows that 
evolutionary processes tend to produce signature distributional patterns, most 
notably power laws, and these have been found in relation to distributions of 
various measures of economic and firm performance (e.g. Amaral, et. al., 
1997, 1998, Stanley et. al. 1996, Lee et. al. 1998).  Axtell (1999, 2001) 
explores these issues using U.S. census and other data and locates possible 
explanations in evolutionary dynamics both within firms and between firms.  
Other researchers have found strong mean regression in firm performance over 
time, that sustained periods of statistically significant outperformance versus 
industry mean is rare, suggesting a lack of adaptive behavior at the firm level, 
and mean industry performance being driven significantly by firm entry and 
exit (Wiggins and Ruefli 2002, 2005).  One hypothesized explanation is a lack 
of adaptive capacity in firms – industries evolve but firms don’t.  Epstein 
(2006, pp. 309-343) for example offers a computational-evolutionary model 
that explores how hierarchical structures and internal trading regimes may 
impact firm adaptability. 

Third, taking evolution seriously also requires one to take the Second Law 
of Thermodynamics seriously as evolution, whether social or biological, 
occurs in a world of physical constraints.  The neoclassical production 
function and theory of the firm is detached from such physical constraints 
(Daly, 1999).  The flip side of economic order creation driven by the 
evolutionary process is finite resource use, waste, and pollution, as evidenced 
by dramatic jumps in all three corresponding with the spread of 
industrialization.  By connecting firms and other institutions to the constraints 
of the physical world via thermodynamics, an evolution as computation 
perspective on economic evolution would potentially cause us to re-think the 
objective functions for those institutions (eventually such physical constraints 
will become part of the evolutionary fitness function in both economic and 
biological substrates) and provide normative insights for how we think about 
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issues ranging from global warming, to resource productivity, to how we 
measure performance in economic and political institutions.     

These are merely examples, but they nonetheless illustrate different ways 
the evolution as computation view of evolution might contribute to the 
institutional economics agenda. 

6.  IMPLICATIONS FOR ONTOLOGY 

Over the past decade there has been a vigorous debate on the ontological 
foundations of evolutionary theories of economics and institutions.  The 
evolution as computation view offers a potential framework for clarifying and 
integrating some of the perspectives in that debate. 

For example, Dopfer and Potts (2004) note that critics of evolutionary 
economics characterize the field as a “menagerie of models and studies sui 
generis.”  They argue for a unifying analytical framework and propose three 
ontological axioms for “evolutionary realism”:  (1) All existences are matter-
energy actualizations of ideas (bimodality), (2) all existences associate, and (3) 
all existences are processes.  The evolution as computation view described 
here would meet all three axioms and potentially go further.  Dopfer and Potts 
note “One way [to unify the field] would be to seek unifying mathematical 
formalisms.  This approach has not been much tried in evolutionary economics 
and mostly because no one, it would seem, really has any idea where to start.”  
An evolution as computation view might provide just such a place to start, and 
such a program would formally connect the ontological foundations of 
evolutionary economics to the ontological foundations of thermodynamics, 
computation, and the physics of information – solid ground indeed. 

One of the most important ontological debates in the literature has been 
between those advocating a generalized Darwinism (e.g. Nightingale, 2000, 
Hodgson and Knudsen, 2006, and Aldrich, et. al. 2008) and what is referred to 
as the continuity hypothesis (e.g. Witt, 2003, Witt, 2004, Cordes, 2006).  This 
is a highly complex and subtle debate, and I will not do it justice here.  The 
generalized Darwinian perspective starts with the perspective that in any 
population of replicating entities with varying capacities to survive in a 
complex environment, and where basic physical laws are at work (e.g. entities 
have finite lives, resources are in finite supply) that the inherent logic of 
Darwinian evolution will cause it to occur.  This is true whether the population 
is of biological entities or social entities.  And while domain and operational 
details may differ significantly across complex population systems , 
Darwinian modes of explanation are a necessary (though not sufficient) 
method for understanding the processes of change in such systems.  
Proponents of this view further stress that it in no way relies on analogy 
between biological and social systems.  Instead, the logic of Darwinian 
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evolution provides an ontological link across such systems (Witt’s monism) 
and such systems cannot be understood, each in their own right, without 
appeal to Darwinian logic. 

The alternative view, the continuity hypothesis, takes as its departure that 
human beings are the result of Darwinian biological evolution, that this 
process and the selection pressures it operated under, produced in human 
brains endowed with certain cognitive capabilities, certain genetically 
influenced behaviors, and extended the pro-sociality of our primate ancestors 
to new levels of complexity.  As that process of social interaction increased in 
complexity (and was supported by biological evolution of brains, language 
capabilities, physical capabilities for toolmaking, etc.), those interactions and 
the culture that emerged from those interactions began to play an ever larger 
role in our survival as a species versus strictly biological considerations.  And 
culturally derived and learned behaviors began to increasingly over-ride or 
modify innate behaviors in many spheres.  Culture in turn became increasingly 
directed at economic activities of food and tool production, and innovations to 
increase survival, material comfort, mating chances, etc.  Such economic 
activity in turn experienced change processes of innovation, adaptation, 
imitation, and so on.  But while one might call such economic change 
processes ‘evolutionary’ they are materially different than biological 
evolutionary processes and do not share fundamental regularities. 

Thus, under the continuity hypothesis,  while cultural evolution and 
economic evolution are ontologically connected to biological evolution 
because they historically emerged from that process, understanding those 
processes of change requires distinct theories.  For example, experimental 
work shows deep behavioral regularities in social interactions (e.g. Henrich, 
et. al. 2004) that may have biological evolutionary roots in our primate past, 
such regularities may in turn provide micro foundations for a theory of cultural 
evolution (e.g. Boyd and Richerson, 1985, 2005).  But such a theory would be 
domain specific and not necessarily Darwinian, at least in the sense used in 
biology. 

The evolution as computation perspective offers potential to bridge the 
divide between generalized Darwinism and the continuity hypothesis, and by 
framing the issues in computational terms show that both views are in fact 
correct.  Consistent with generalized Darwinism, the evolution as computation 
view abstracts the logic of evolutionary processes from the specific domain in 
which it operates.  It would also agree with the generalized Darwinism 
position that this logic is the only explanation we know of that accounts for 
key features of complex population systems, including as noted previously the 
emergence of order and complexity in both biological and social systems.  It 
would also agree that variation, selection, and replication are at the heart of 
Darwinian logic, but take a very broad view of how that logic can be 
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implemented in differing domains (e.g. human intentionality and creativity is a 
valid source of variation in social domains). 

A computational view would disagree with one point made by continuity 
advocates, that abstracting evolutionary logic “amounts to nothing more than 
an attempt to construct an abstract analogy to the domain-specific model of 
evolutionary biology” (Witt, 2004, p. 128).  While early attempts to simulate 
abstract evolutionary processes on computers may have been “inspired” by 
biological evolution (DeJong, 2006), as soon as the first evolutionary 
algorithm ran on the first Turing machine, that abstraction jumped ontological 
categories beyond analogy to the more universal domain of computation.  
While Witt is correct in his stance that analogies do not make good theories, 
analogy as inspiration to discover ontologically sound theories has a long 
history in science.  This is not surprising as analogy-making is a critical part of 
human cognitive processes for creativity and sense-making (Mitchell, 1993).  
One can turn the ontological tables and note that the fact that Darwin was 
inspired by Malthus in developing the theory of natural selection does not 
position biological evolutionary theory as merely an analogy of economic 
theory. 

But this point aside, the computational view can also potentially integrate 
the continuity program.  This is essential, because the major elements of the 
continuity hypothesis must be prima facie correct – most notably there is 
strong evidence for the co-evolutionary interplay over time between genes, 
morphology, brains, language, behavior, social structures, artefacts, and 
environment, extending from our primate ancestors to modern humans (e.g. 
Cavalli-Sforza, 2001, Jablonka and Lamb, 2005, and Richerson and Boyd, 
2005).  One path to integration is to note that while the generalized Darwinian 
logic of variation, selection, and replication lies at the algorithmic heart of the 
computational process, that the rest of the computational machinery – 
mechanisms for encoding and decoding schema, reader/builders, the 
emergence of a fitness function, the deductive-tinkering process, and so on – 
requires explanations generating from the continuity hypothesis (in fact, where 
else could they possibly come from?).  The coding of economic schema (PTs, 
STs, and Business Plans) rely on the evolution of language.  Deductive-
tinkering is an outcome of our cognitive evolution (and may involve gene-
culture interaction as well).  Beinhocker (2006, pp. 308-314) postulates a 
continuity hypothesis between modern economic preferences and the ancestral 
evolutionary environment (e.g. our preferences for fatty foods, items signaling 
status, or economically supporting close genetic kin).  Such biologically 
influenced preferences in turn influence the fitness function at work in 
Business Plan evolution in the economic system. 

Much work would need to be done to full explore the ontological 
implications of the evolution as computation stance, but one can see the 
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potential to ontologically connect economic evolution at a fundamental level 
to basic physical laws of thermodynamics, information, and computation, is 
both analytically and mathematically rigorous, and integrates key elements of 
both the generalized Darwinism and continuity hypothesis programs. 

7.  SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS 

This paper has argued that while the evolution as computation literature has 
had a methodological impact on evolutionary and institutional  economics – 
primarily through the application of genetic algorithms – the theoretical and 
ontological implications of that literature have to date not been adequately 
explored. 

The paper briefly reviewed the history of that literature, beginning with 
Wright’s (1932) insight that evolution can be viewed as a search process in a 
vast combinatorial space of possibility.  That placed evolution in the realm of 
other algorithmic search processes, leading to explorations of the algorithm’s 
general properties by mathematical and computational means.  Building on 
those explorations, researchers such as Holland (1975) then attempted to 
create a general theory of evolution as computation that could be applied in 
natural, social, and artificial systems.  While as of yet, there is no such 
universally agreed, general theory of evolutionary computation, I abstracted 
from this literature a generic view of evolutionary computation, that I then 
mapped into the domain of economic systems.  This is not the only way to 
formulate either a generic view or map such a view to the economy, but rather 
my point was to show that such a view and mapping is both possible and 
yields potential explanations for key features of the economy.  Most notably it 
offers the potential to explain the dramatic, non-monotonic rise in order and 
complexity in the economy over time.  Finally, I argued that an evolution as 
computation perspective offers the further potential to strengthen and integrate 
the ontological foundations of evolutionary economics. 

I would further argue that if evolutionary and institutional economics do 
not bring the evolution as computation perspective into their core programs, 
that the field will continue to suffer from a proliferation of ad hoc theories, a 
lack of ontological agreement, and a lack of analytical and mathematical rigor. 

Going forward there would be three elements to such a research program: 

1. Further work to develop a general evolution as computation framework 
that can be mapped to economic and other social systems ; 

2. Drawing on that mapping from a general framework, the development of 
rigorous evolutionary economic models using qualitative, mathematical, 
and computational methodologies; 
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3. Test propositions from those models against data, for example could we 
use such models to say something testable about statistical or qualitative 
patterns of economic change, distributional characteristics of key economic 
variables, or measures of order, complexity, or information in the 
economy. 

In his (2006) essay, Richard Nelson argues for “ if Universal Darwinism 
provides a roomy intellectual tent welcoming scholars studying a variety of 
topics, with the unifying element being a dynamic theory involving variation 
and selection, but with key variables and mechanisms being recognized as 
perhaps differing greatly between biology and human culture, we can be 
happy in that camp.”  Applying the evolution as computation perspective to 
economic and institutional evolution offers the potential for just such a roomy 
– but rigorously constructed – intellectual tent. 
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