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I. Introduction:

Gode and Sunder (93) show that agents randomly bidding and selling in a double auction (each agent
constrained not to lose money) will extract almost 100% of the surplus in the market. The trading process -
furthermore converges to the competitive equilibrium. Due to the limited optimization ability of their agents, the
results of Gode and Sunder respond to the criticism that equilibrium theory assumes superhuman abilities of
economic agents. The Gode-Sunder results were, however, for a partial equilibrium model. Hence, in evaluating
of the importance of their results, it is necessary to ask whether the agents can be extended to a general
equilibrium environment with the same results.

Putting randomly trading agents into an exchange economy should reveal whether the success of Gode
and Sunder (93) was due in part to the simplicity of the task of the agents. In a small exchange economy, agents
are required to trade more than one good simultaneously and operate as both buyer and seller. In Gode and
Sunder (93) agents trade one good and work only one side of the market. I will show when randomly trading
agents in a general equilibrium environment will or will not attain the competitive equilibrium.

Hurwicz, Radner and Reiter (75) have already done similar work with random agents. Hurwicz, Radner
and Reiter (75) show that it is possible to trade to an efficient allocation in a multiple good economy with a fairly
simple decentralized process. What is remarkable is that they prove agents, similar to those in Gode and
Sunder(93), do not need complete information about other traders or the commodity set to reach an efficient
allocation. Hurwicz, Radner and Reiter (75) do not however demonstrate that their process reaches the
competitive equilibrium when it exists. The process presented in this paper is very close to the Hurwicz, Radner
and Reiter process. My results show that the process put forward by Hurwicz, Radner and Reiter will not always
reach the competitive equilibrium when it exists.

I will show that the competitive equilibrium is reachable by random trading only under very limited
conditions. Trading behavior can be predicted using a Markov transition matrix because the matrix delineates a
unique path of highest probability for the trading. If the competitive equilibrium is within a small neighborhood
of this path the traders will randomly reach the competitive equilibrium.

To demonstrate the process, 1 have included the results from a computational version of the model as an
example. The example illustrates the behavior of the traders. It concretely connects the trading outcome from

several endowment points with the competitive equilibrium of the model, revealing when the competitive



equilibrium is reached and when it is missed. The example has results from two sets of preference assumptions

for the agents: Cobb Douglas and perfect complements.

II. The Model

A. Assumptions about the Agents and the Environment:

As noted in the introduction my trading process is similar to the process developed by Hurwicz, Radner

and Reiter (75). To facilitate comparison of the models, I have adopted notation based on theirs.

The Agents:
Definition: The set of Agents I={1,2}, indexed by i.

Definition: The two types of agents {A,B}. There is one agent of each type.
Each type of agent has a fixed utility function. The utility functions U, and Uz are monotonic

concave and continuous.

The Environment:

Definition: The set of goods G={1,2}, indexed by 1. The quantity of goods available is in

continuous not discrete units.

Definition: The environment is a 10 by 10 Edgeworth Box; each good the market has a

maximum of 10 units.

Definition: The set of feasible trades for each agent is X; where
X = {x,.:x,. =<x',x* >&x >0&x < IO,VI} . The set of possible trades for each agent must be

within the dimensions of the Edgeworth Box. Agents cannot trade to a negative amount of a

good or get more than 10 units of any one good.



Definition: The set of globally feasible trades Xg. Firstlet x € X = X\xX,. Let

X, = {x:xl +x, =< 10,10 >} such that global feasibility requires market clearing for all trades.

The globally feasible set is by construction also individually feasible for both agents because each

x is from the cross product of the feasible sets of each agent.

Definition: Each trading session from start to finish is called a market; within a market are
periods denoted by t. The final period is denoted by 7 so t=0,...,7. Where 7 is assumed to be
finite because the agents are expected to reach an € small distance from the contract curve. Ina
continuous space there is a zero probability that agents will reach any one allocation on the

contract curve in a finite amount of periods.

B. The Trading Process:

Let a market be a sequence of trades. At the beginning of each round an endowment x;° is given to each
agent i. As defined above the trading takes place in periods. At each period t the agents also have an
endowment point; let the endowment point be denoted by x';. Each agent starts a period with an endowment and
after trading ends each period with an allocation,

At each period t, the referee picks a point in the neighborhood of the endowment point and offers it to
the agents as a possible allocation. The referee randomly pricks the offer using a uniform distribution over the

neighborhood. Let the neighborhood at t be the set
y(x) = {x: "x,.' 7 || <8, x;eX;, for all i & xeXg}.
In the two agent case presented here, the neighborhood is a circle centered around the endowment point of the

players. Distance as denoted by |¥] refers to the points within the circle of radius & from the endowment point.

Offers made by the referee also must satisfy global feasibility conditigns defined above. Figure 1 shows an

example of a neighborhood.




Figure 1
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Next, each agent must decide to accept or reject the offer made by the referee. Both traders must accept
for a trade to be made. A trader accepts or rejects an offer based solely on whether the offer is in their contour
set. The contour set for agent i is defined as the set

Q") = {xiix, o~ x/ 5;€X}.

The contour set is the set of possible trades that make the agent at least as well off as their allocation.

The contour set and the neighborhood then define the set of acceptable allocations for an agent. The acceptance
set for an individual falls in the following intersection at t:

Al = YO Q) , fori=1..n,

An accepted offer a' €eA'nA', comes from the intersection of the acceptance sets for both agents. Figure 2

demonstrates an acceptance set.



Figure 2
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The accepted allocation will then be the endowment point of the next period such that a' =x"". If the offer by the

referee is rejected then the players keep their endowments and receive a new offer in the next period therefore x'

t+1

The trading is continued until the area Q(x)= Xy~ XL, Q, (x,') collapses to an ¢ distance from the

contract curve.
IIY. Results

The progression of trades across periods are generated by a continuous Markov process. It is continuous
process because the state space of goods is continuous. The transition probability function for this process can
be used to estimate a discrete matrix, Q, a graphical representation of the conditional probabilities of arriving at
each point in the feasible set. The probability matrix Q reveals a highest probability trajectory over the space of
trades. It is the highest probability trajectory that predicts if the traders will reach the Competitive Equilibrium.

The Markov process of this model is one with a continuous state space and with {x‘ O<t< oo} . The

Markov transition function is p(x|9) = I(A,)(x) where A’ = F% A}, the Cartesian product of each

1
area(A')
individual’s acceptance set at t. The vector of parameters 0 includes the preferences, and endowment x". The

function I(.) is an indicator function for points in the acceptance set. Given that the feasible set of trades within



the boundaries of the indifference curves, Q(x;%) NQ(x;), is a Borel subset of the set of all trades within the
Edgeworth Box, the probability measure p(x [0) is a Markov transition function. To complete the definition of a
Markov transition function, p(x |8) is a Baire function for a fixed feasible set of trades and any time interval, s
and t. The probability measure p(x |9) also satisfies the Chapman-Kolmogorov equation (Doob, 53).

Intuitively, the Markov property holds because given x' for some t, transition probabilities are independent of
past states. For example, given that the traders are at the endowment point x', the region €(x’) will be the same
no matter what path of allocations the agents traded in t=0,...,t-1. The example is demonstrated in Figure 3.

The sequence of trades can take any path to reach point B and the neighborhood used by the referee to pick
offers will remain the same.

Figure 3

neighborhood st B A

To facilitate the description of the sequence of trades a simplification to a discrete approximation to the
continuous Markov process would be instructive. For illustration purposes, let’s consider a similar process that
only has a discrete number of possible states. The state space is the discrete Cartesian product of the two agents’
upper contour sets for the original endowment, x°. Now let the matrix, Q contain the conditional probabilities of
eventually passing through each point in the grid. Straightforward calculation will give each entry in Q. Fora
simple example take the discrete grid which is demonstrated in Table 1. The indifference curves that correspond

to boundaries of this grid are from Cobb Douglas preferences.



Table 1

Start

w44 0,333/ 0.111] 0.037 0 0 0 0

0.333 55 0
0.111] 0.333F 0 0
0.037| 0.186 0 0
0] 0.066 5 0
0[ 0.022 0 0
0[ 0.007 0 0
0[ 0.002 0 0
0 0 0 0
0 0 0 0
0 0 Of 8 0
0 0| 0 0 o0
0 0 0] 0 0 0 0

"~ HTrajectory of Highest Probabilities
Absorption States

The cells have the probability of getting to a trade given that the agents have started at the endowment in the
upper left corner. The neighborhood around the endowment is fixed to be one unit. The one unit neighborhood
means the traders start by moving to the right, downward, or diagonally down to the right. The probability
associated with moving through the grid of possible actions sets up a probability of moving to any point which
remains stationary throughout the process

There is a uniform probability that the agents will trade to any point in the neighborhood at a period t.
The' reasons that the agents move in this manor is that they always trade to a allocation at least as good as the
one before it and the utility functions of the agents are all monotonic and therefore increasing in x. So thereis a
p=1/3 that any one point in picked at time t from the neighborhood of feasible allocations.

Also represented in the matrix in Table 1 is the absorption states of the contract curve. For simplicity the
contract curve is represented by a line. In the continuous case, corresponding to the process of the model, the
absorption line will not have the breaks in it that the discrete cases do. The points a small distance (g) beyond
the contract curve still will have a positive probability of being reached. If the traders cross the line then they will
reverse the direction of their movement. Reversing direction is consistent with the rule that they cannot chose
points that are not at least as good as the previous allocation. The discrete case shows the probability of getting
to any point on the absorption line. In the infinite state case these probabilities are a continuous distribution over

"the contract curve.



The trajectory of highest probabilities will determine the mean of the distribution of over the contract
curve. In Table 1 the trajectory can be traced from the starting endowment point through to the contract curve.
The distance of the CE from the bisection point is a significant predictor of the success of the agents in getting to
the maximum. If the competitive equilibrium is on or a small distance ﬁom the path of the highest probability the

random traders will reach it. Only when this condition holds, will random agents in an Edgeworth Box optimize.

IIL. An Example:

Cobb Douglas Preferences:

The first set of results were for the following set of CES utility functions: U=x;P+3y,P and

U2=2x2p+y2p , where p =.000001. The sets of endowment points were: {(2,2),(8,8)}, {(5,2),(5,8)},
{(8,2),(2,8)}, {(5,5),(5,5)}, {(8,5),(2,5)}, {(8,8),(2,2)}. This set was chosen to cover half of the area of the
Edgeworth Box.

To get an idea of general trading behavior, it will be useful to look at the sequence of trades from start to
finish. Figure 4 and 5 are paths for the first five completed markets for each set. Each graph places the trading

in the initial set of indifference curves and shows the trades’ relation to the contract curve.

Figure 4 Figure 5
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The lines that the sequences of trades make cluster together to produce a distribution of intersections with the
contract curve, Also in the graphs is the middle of the contract curve between the two indifference curves. The
mean sequence of trades for any given set of preferences and endowment points comes close to bisecting the
contract curve within the indifference curves at the middle. The middle is therefore a rough estimate for where
the final allocation of the process will be.

The results of the process will be close to the competitive equilibrium when the indifference curves are
symmetric around the bisecting line of the ellipse. The mean sequence of trades intersect the contract curve near
the middle and the middle overlaps with the competitive equilibrium in Cobb Douglas preferences when the
curves are symimetric around the bisecting line of the ellipse.

The utility functions chosen create both symmetric and non-symmetric curves depending on the
endowment point. Figures 6 shows a non-symmetric set of curves. Included are the competitive equilibrium and
middle point. The scatter of points represent the final allocation for 30 runs of the trading. The points in Figure
6 are far from the competitive equilibrium. Contrast this to Figure 7 where the indifference curves are symmetric
and the competitive equilibrium is near the middle of the contract curve. Here the scatter plot of final

allocations are right over the competitive equilibrium.
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T-tests were conducted on the differences between the competitive equilibrium price and the final prices

and between the midpoint price and final prices for each set These t-statistics are presented in Table 2.
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Table 2

t-statistics on Difference of
Simulation Prices from:

Middle CE Price

Price
Set1 -3.591001( -23.58697
Set 2 -3.503675| -20.19512
Set 3 -1.411562( 1.450362
Set 4 1.159837| -0.143283
Set5 5.674977| 19.93654
Set 6 5.452497| 26.41997

Sets 3 and 4 both have symmetric indifference curves. The t-tests show their difference from the competitive
price and the middle of the contract curve are not significantly different from zero. All the other sets have
indifference curves that are not symmetric and they are not close to the competitive equilibrium.

These results show that market constraints are not enough to constrain trading in a two good economy.
At each trade the indifference curves draw closer together but that does not translate into a constraint that
eventually forces traders to get to the competitive equilibrium. It is interesting that random trading can get to the
maximum at all but it is not the forces of the market that get the trades to the competitive equilibrium. Trading
in the computational algorithm is a Markov process. It is the Markov transition matrix that constrains where the
traders move. The transition matrix only relates to the market by the indifference curves that set its dimensions

and the contract curve which creates a set of absorption states.

Leonteif Preferences:

The utility functions used were: U;=MIN(x,,3y;) and U;=MIN(2x,,y;). The sets of endowment points
were different from those used for the Cobb Douglas preferences. With the Leonteif preferences it was more
interesting to look at endowment points linearly related than to use points selected over the whole range of the
Edgeworth Box. The endowment sets were: {(2,3),(8,7)}, {(4,3),(6,7)}, {(6.5,1.99),(3.5,8.01)},
{(7,1.99),(3,8.01)}, {(7.5,1.99),(2.5,8.01)}, {( 8,1.99),(2,8.01}}, {(5,5),(5,5)}.

Figure 8 and 9 show that as the endowment point moves closer to the competitive equilibrium so do the

final allocations.

11



Figure 8 Figure 9
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The distribution of data points becomes smaller as the area within the contract curve become smaller, but the
data “cloud” will always lie at approximately the same angle relative to the endowment point. As in the case of
Cobb-Douglas preferences, this angle will be dictated by the Markov Process guiding the trade movement. Yet
when the competitive equilibrium is at a far corner of the space of feasible trades, as with both figures 8 and 9, it
will be close to impossible to reach. The contraction of the indifference curves after every trade in the sequence
will close the competitive equilibrium out of future trades. In Figures 8 and 9 the competitive equilibrium can
only be reached with certainty when the player nearly indifferent between endowment and competitive
equilibrium trades along their indifference curve.

When the competitive equilibrium is not in a corner of the feasible trade space, the angle of the
endowment from the competitive equilibrium will dictate the success of the traders. This observation is directly
related to the discussion of the mean sequence of trades in the Cobb Douglas section. If the competitive

equilibrium is on the line of the mean sequence of trades for the Leonteif preferences the process will reach it.

IV. Conclusion:
The main conclusion to be made about the result is that the market constraints do not force the traders to

the competitive equilibrium in an Edgeworth Box. It is not the competition between agents that guides the

trades, but rather it is the random nature of the process. Traders wander down a random path that ends at the
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contract curve. Because the path is predictable the ability of the agents to reach a certain area on the contract
curve is also predictable. The Gode and Sunder results can be explained similarly. In their case the market
constraints were strict enough in relation to the random path of trading to force trading to the competitive

equilibrium. It is as if the random traders are forced into a narrow canyon with the competitive equilibrium

waiting by the only exit. So the random agents are consistently reaching the competitive equilibrium because it is

inescapable. Without a narrow canyon the competitive equilibrium in a two good economy is more elusive.
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