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TIPPING POINTS

PJ LAMBERSON AND SCOTT E. PAGE

Abstract. This paper formally defines tipping points as a discontinuity between cur-
rent and future states of a system and introduces candidate measures of when a system
tips based on changes in the probability distribution over future states. We make two
categorical distinctions between types of tips relevant in social contexts: The first dif-
ferentiates between direct tips and contextual tips. A direct tip occurs when a gradual
change in the value of a variable leads to a large, i.e. discontinuous, jump in that same
variable in the future. A contextual tip occurs when a gradual change in the value of one
variable leads to a discontinuous jump in some other variable of interest. We argue that
while scholars and writers often focus on direct tips, contextual tips often make direct
tips possible, such as when human rights conditions in a state deteriorate creating the
potential for an uprising. The second differentiates tips between outcomes that belong
to the same class – such as tips from one equilibrium to another – from tips that result
in a change in the outcome class, such as tips that occur when an equilibrium system
becomes chaotic or complex.

Introduction

References to the term tipping point have exploded in recent popular and academic
writing, particularly in the context of events like the Arab Spring and the home mort-
gage crisis.1 With this rapid expansion in use, the phrase is in danger of losing any
scientific meaning and therefore any value for social scientists. In this paper, we formally
define tipping points, correct common misconceptions about when tipping points occur,
delineate substantively important categories of tipping points, and provide a candidate
measure to measure how much a system tips.

As mentioned, the media, popular writers, and many academics would have us believe
that tips occur with great regularity. Elections tip (Silver, 2008), markets tip (Ellison
and Fudenberg, 2003), fashions tip (Gladwell, 2000), computer applications tip (Onnela
and Reed-Tsochas, 2010), public opinion tips (Liptak, 2011), societies tip (Solé, 2011),
and the economy tips (Hauser, 2011). Such claims lack and scientific basis given that

PJ Lamberson thanks the Zell Center for Risk Research at the Northwestern University Kellogg
School of Management for financial support of this research. Scott Page thanks grants form the National
Science Foundation and the Army Office of Scientific Research as well as the Santa Fe Institute Summer
Workshop where these ideas were first developed.

1For example, on Sept 1, 2011, Aljazeera ran an article entitled: The Arab Spring: Anatomy of a
Tipping Point. In October of 2011, we stopped counting at five hundred the number of Google links
that contained the words “arab spring” and “tipping point.”
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there exists no precise definition of a tipping point. This void inhibits social scientists’
ability to identify, quantify, and understand tipping behavior. In this paper, we use the
mathematical formalism of dynamical systems to define tipping points as discontinuities
in the relationship between present conditions and future states of the system. In other
words, if gradually adjusting some variable now causes a discontinuous jump in the state
of the world at some future time, then a tip occurs. As we shall show, many apparent
tipping points may not be tips given our formal definition but rather inevitable upticks
in adoption rates driven by positive feedbacks.

Having defined tipping points, we proceed to categorize them according to two binary
distinctions that we believe will help scholars better identify tipping points empirically
and to develop policies for managing tipping dynamics. The first distinction draws a
bright line between tips that result directly from a change in the variable of interest and
those that result from changes in the context surrounding that variable. We define these
as direct tips and contextual tips, respectively.

As an example of a direct tip, consider the Vietcong’s bombing of the United State’s
airbase at Pleiku on February 7, 1965, which, according to historians, caused President
Johnson to escalate the war in Vietnam (Jervis, 2009). We characterize this as a direct
tip. The bombing of Pleiku by the Vietcong led to escalated bombing by the United
States. Of course, such an event need not be the only possible tip. As McGeorge Bundy
who was then serving as national security advisor said “Pleikus are streetcars.” In other
words, “if you are waiting for one, it will come along” (Jervis, 2009). In contrast, when
on October 18th, 1987, Secretary James Baker stated on the Sunday morning talk shows
that the United States would not accept Germany’s interest rate increase, his actions
changed the mood of investors. He didn’t trade any stocks, but he changed the context.
The next day, Monday, October 19th, a few sells resulted in more sells (direct tipping),
and the Dow fell 22.6%. We characterize this a contextual tip.

Our second distinction separates tips that change the behavior of the system and tips
that do not. Wolram classifies the states of systems, be they political, economic, or
physical, as belonging to one of four classes: fixed point, periodic, random, or complex
(Wolfram, 2002). A system can tip within – from one stable equilibrium to another – or
between these classes – from random to stable or from stable to complex. We define these
two types of tips as within class and across class. In many social science models, tips move
the system from one equilibrium to another. For example, in social interaction models
as one dials up the social influence term a stable mixed equilibrium becomes unstable
creating a contextual tip. Once that system does tip, it moves to a new equilibrium
configuration in which everyone takes the same action (Brock and Durlauf, 2002).

Finally, we develop a candidate measure of tippiness based on change in the expected
distribution over future outcomes. The event itself doesn’t have to be large or precipitate
an immediate large response, it need only change the probability distribution over future
events. So, if a small change in its virulence means that a disease will likely spread, we
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classify that change as a tipping point. The subsequent rise in the spread of this disease
is merely the inevitable spread based on positive feedbacks and not the tip itself.

1. Identifying a Tip

Generally tipping points occur in some quantity (or quantities) over time, such as the
number of people infected with a disease, the GDP of a nation, the approval rating of the
president, or even the probabilities that actors play a particular strategy. Therefore, we
will rely on the mathematical formalism of dynamical systems.2 In dynamical systems,
the variable of interest is referred to as the state. The state depends on time, so we
denote it by xt. Denote the initial state, sometimes called the initial conditions, by x0.
Let Ωx, the state space, denote all possible states of the system.

The state can represent either a single entity, or it can be a statistic that aggregates
characteristics of a population, or it can be a multidimensional variable that captures
several quantities at once. For purposes of our classification, it will be important to
distinguish between the variable of interest, xt, and other variables, yt, that may affect
the process. For example, xt might be a government’s approval rating and yt might be
the unemployment rate. Changes in yt can influence xt.

Time can proceed continuously or in discrete steps. In the former case, we write the
dynamical system using differential equations, such as

(1) ẋt = f(xt, yt).

While in the latter, we use difference equations,

(2) xt+1 = F (xt, yt).

Equations (1) and 2) are called equations of motion.

Both formalisms should be familiar to social scientists. Either can be appended to
include random variables to create stochastic processes. For example, a presidential
approval rating, xt, could be described as a function of his rating in the previous period,
xt−1, his policy choices in the previous period, yt−1, and a random shock, εt:

(3) xt = F (xt−1, yt−1) + εt.

For the purpose of clarity, in what follows, we restrict attention to deterministic processes.

1.1. Formal Definitions. With this basic framework in hand, can now give a formal
definition. For brevity, we use notation from the continuous case, but the analogous
discrete time definition is straightforward. Let xt, yt, and zt be dynamic processes such
that future states of xt are determined by the current states of xt, yt, and zt which belong
to Ωx, Ωy and Ωz, respectively. We call the variable xt the tipping variable and yt the

2For richer treatments of the mathematics of dynamical systems see the books by Strogatz (1994) or
Hirsch, Smale and Devaney (2004).
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Figure 1. Different paths in the rumor spreading model (see section 3.2)
generated by varying the probability p that the rumor is passed on in a
given contact. The paths rip away from each other when the tipping point
at p = .01 is crossed.

threshold variable, and use zt as a place holder for anything else that might affect the
function value.

At a tipping point small changes in a variable dramatically affect the state of the system
at some time in the future. A tip does not imply that the state of the system undergoes
some large change immediately. For example, Jackson and Yariv (2007) develop a model
of how behaviors spread and prove the existence of a threshold, a tipping point, that
depends on the network of connections in the population. If the initial number of adopters
lies above this threshold, then the behavior spreads. If fewer people adopt initially, then
the diffusion process stops. Whether or not the initial number exceeds or falls below the
threshold does not have an enormous effect on the first period, but it completely changes
the final distribution.

To capture this effect of present conditions on the future, we introduce a function
L∆(xt, yt, zt) = xt+∆, which gives the value of xt exactly ∆ steps after t (if the process is
stochastic then L∆ gives the expected state at t+ ∆).

A point τ ∈ Ωy is a tipping point for xt if there exists a path q : (−1, 1) → Ωy with
q(0) = τ such that L∆(xt, q(s), zt) is discontinuous as a function of s at s = 0 for some
∆ > 0.
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What this means is that small changes in yt near the threshold point τ cause the future
paths of xt to rip apart in a discontinuous way.3 Figure 1 illustrates the concept in a
model of the spread of a rumor, which we detail in section 3.2. The plot depicts different
paths for the number of people spreading the rumor as the probability p that the rumor
is passed on in any given contact is varied. As the plot illustrates, for values of p less
than .01 and greater than .01, gradually changing p gradually changes the evolution of
rumor exposure, but right at p = .01 a gulf opens up between two separate groups of
outcomes.

The power of the formal definition is illustrated in the following section where we de-
velop three conditions related to tipping behavior and demonstrate how these conditions
apply to common models and empirical observations.

2. Tipping Conditions

In this section we define three conditions that characterize potential tipping behavior.
The first covers situations in which no tipping occurs. The second covers systems with
initial tipping points, and the third covers cases where tipping occurs more generally.

2.1. Models without tips. Many social science models do not exhibiting tipping be-
havior. The dynamical systems framework gives a simple explanation:

No tipping condition: Whenever the equation of motion, ẋt = f(xt, yt), intersects the
line ẋt = 0 only once and is decreasing at that intersection, regardless of other parameter
values, yt, there is not a tipping point.

Intuitively, the condition says that when the system is below some equilibrium point it
tends to increase and when it is above that equilibrium, it tends to decrease. Thus, there
is one and only one equilibrium, and that equilibrium is stable, so there is no possibility
of tipping. For example, consider a common pool resource problem. Let xt denote the
number of individuals using the resource at time t. Let the payoff to each individual
using the resource equal y−2xt and normalize the payoff for those not using the resource
to zero. In equilibrium, x∗ = y

2
, so that the payoff from using the resource equals the

normalized payoff of zero. We can transform this into a dynamical system by assuming
that individuals decide whether to use the resource or not based upon the relative payoffs.
Then the following differential equation captures the evolution of xt over time,

(4) ẋt = y − 2xt.

3Note that although our definition requires a discontinuity, rather than a non-differentiable point,
our definition can also capture sharp changes in the rate of change of a time series by defining the state
variable xt as the derivative or first difference of the original time series of interest.
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Figure 2. Dynamics in the common pool model. There is a single, stable,
equilibrium at x∗ = y/2.

Under these dynamics, increasing the relative payoff to using the resource increases the
number of individuals who use it. Figure 2 represents this graphically. The arrows along
the horizontal axis represent the directional effects on x. If xt < x∗, then y − 2xt > 0
and xt will increase. Alternatively, If xt > x∗, then y − 2xt < 0 and xt will decrease.

We can use this formalization to determine whether this system contains a tipping
point. Tipping points can occur either by changing xt, the action, or by changing y, the
parameter. First, let’s consider changing xt. Any perturbation of xt from equilibrium
will be corrected by the dynamics. Thus, we can classify this equilibrium as stable and
no change in xt will cause the system to tip. Next, consider changes in y. Any small
change in y shifts the line y − 2xt up or down a corresponding amount. Here again, we
have no tip because as we gradually change y, the equilibrium x∗ also changes gradually.

This example and Figure 2 make clear why the no tipping condition guarantees a
model in which gradual changes in the variable of interest or the model parameters give
rise to gradual changes in outcomes. Prominent social science examples that fall in this
category include the Median Voter Theorem and the equilibrium of supply and demand.

2.2. Initial tips. In the previous section, we described a commonly satisfied condition
that guarantees the non-existence of a tipping point. Now we turn to another common
case in which a tipping point exists, but at a different point than typically identified. This
common error in the identification of tipping points relies on graphical interpretations of
data rather than formal explication of the tip.

Specifically, tipping point claims are often based on an apparent acceleration in a
diffusion curve. For example, consider the graph in Figure 3, which depicts the spread of
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Figure 3. The growth of Facebook.

the online social network Facebook. Facebook began in a Harvard dorm room in February
of 2004 and grew explosively, reaching over half a billion users by July 2010 (Facebook,
2011). From the graph, a tipping point appears to occur around the beginning of 2007.
But such an interpretation fails for two reasons: first to say, “Facebook reached a tipping
point in early 2007,” obliges some explanation as to why growth accelerated after 2007,
not simply that it did. The cause of such an acceleration can never be determined simply
by examining the diffusion curve.

Second, while a kink in the graph may appear to be compelling evidence of a tipping
point, it may only be an artifact of scaling. Consider a standard exponential growth
function egt, where g denotes the rate of growth per period and t denotes time. Figure 4
depicts such a function on four different time scales (g = 4%). In the panel in the upper
left, there appears to be a gradual increase in slope but no tipping point. As we extend
the graph over one hundred periods, a possible tipping point reveals itself around period
seventy. But, when we extend the graph for another hundred and fifty periods, that
tipping point disappears, and a new tipping point occurs around period two hundred.
Finally, when we plot out five hundred periods, the second tipping point no longer exists,
but a new one arises around period four hundred and fifty. Because the vertical scale
increases more rapidly than the horizontal scale, the visual tipping point shifts to the
right as we extend the graph. This ambiguity, along with the fact that the curve depicts
an unchanging growth process over time, leads us to reject these as tipping points.

Again, a simple model and an illustration of the equation of motion makes the intuition
clear. Suppose the rate of change in industrial production of a nation is proportional to
its current production, xt. Then the equation of motion is

(5) ẋt = rxt,
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Figure 5. Dynamics in the exponential growth model.

as shown in Figure 5, and the solution is exponential growth: xt = x0e
rt. As the figure

illustrates, (5) does not satisfy the no tipping condition. In fact there is a tipping point
in this model at xt = 0. There are two distinct trajectories that this model can give rise
to: if xt = 0 then xt ≡ 0 for all time, but as soon as xt > 0 for any t, then limt→∞ xt =∞.
This observation gives rise to our second tipping condition:
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Figure 6. Exponential growth of the world population and articles on Wikipedia.

Initial tipping condition: Whenever the equation of motion, ẋt = f(xt, yt), intersects
the line ẋt = 0 only at xt = x∗ and is positive for all xt 6= x∗ (and all values of yt) then
there is only one tipping point and that tipping point occurs at x∗.

Any linear first order positive feedback loop (Sterman, 2000), like the one described
in equation (5), produces exponential growth and thus will satisfy the initial tipping
condition. But exponential growth is not the only model captured by this condition.
Most standard diffusion models (e.g. the Bass model (Bass, 1969)) also fall into this
category. Thus, it’s not surprising that graphs like those in the bottom panels of Figure
4 are extremely common and that the media and others see tipping points everywhere.

For example, Figure 6 plots growth in the world population and articles on Wikipedia.
While both of these graphs appear to exhibit tipping points; around 1700 for the world
population and sometime in 2002 for Wikipedia, it’s unlikely that either of these apparent
kinks represents a tipping point by our definition. However, as described in the initial
tipping point condition, these systems do contain tips –when Mark Zuckerberg put up
the first “thefacebook” page and Jimmy Wales and Larry Sanger launched Wikipedia
the future was forever changed – but those tipping points occurred long before the more
commonly identified kinks in the diffusion curves. This distinction has important conse-
quences. A small intervention at the initial tipping point may have prevented the creation
of the world’s largest social network or encyclopedia, but had something come along to
impede the growth of either Facebook or Wikipedia at the times more commonly pointed
to as tipping points, it most likely would have only temporarily slowed their inevitable
diffusion.

2.3. Tipping existence. The previous two sections gave conditions that eliminate or re-
strict the possibility of tips. Now we turn to a condition that guarantees more interesting
tipping behavior. Consider the following model of a bandwagon process. Suppose a popu-
lation of R Iowa Republicans is choosing between two presidential primary candidates, M
and N . Assume that the voters’ only motivation is to support the candidate most likely
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xt
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xt R-R

Figure 7. Dynamics in the bandwagon model. There are two stable equi-
libria at R and −R and an unstable equilibrium at xt = 0.

to win the general election, and they take the current level of support for each candidate
in Iowa as a signal of the candidates’ electability. As a candidate gains more support,
he’s viewed as more electable, leading to even more support. When the candidates have
equal support, voters are indifferent between them. Specifically, let xt = Mt−Nt denote
the difference in support for M and N at time t, and suppose that

(6) ẋt =

{
xt |xt| 6= R

0 |xt| = R

Eventually, the bandwagon process converges to either xt = R or xt = −R. Notice
that unlike the common pool resource model, this model has a tipping point at xt = 0.
Suppose first that xt lies just to the left of 0, then the process will converge to the
equilibrium in which all of the voters support candidate N . But suppose that we perturb
xt so that it exceeds 0. In that case, the process converges to all M supporters. Thus,
small changes in the number of people who initially support M or N can have large
effects on the final outcome. Later when we present our tipping typology we will classify
this as a direct tip as a small change in the variable itself, xt leads to large change in its
equilibrium value.

This example leads us to formulate the following tipping existence condition:

Tipping existence condition: Whenever the equation of motion, ẋt = f(xt, yt), inter-
sects the line ẋt = 0 at a point xt = x∗ and is increasing at that intersection then x∗ is a
(direct) tipping point.
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Figure 8. The differential equation governing the dynamics of the re-
source model. The arrows indicate whether the amount of resources avail-
able, xt, will increase or decrease depending on the current amount avail-
able.

The tipping existence condition describes situations in which a tipping point is guar-
anteed to exist. Again, many social science models fall into this category. In particular,
any model with an unstable equilibrium point, such as models for the selection of a tech-
nology standard (e.g. Arthur, 1989) or game theoretic models like the one described in
Table 2 below fit this condition. As we increase the dimensionality of the dynamical sys-
tem and the extent of nonlinearities, tipping points become more likely as the potential
for more equilibria also increases. To give a hint of why this occurs, we next construct
a one dimensional nonlinear dynamical system that we will call the resource model. Solé
(2011) shows that variations of this model have been used to characterize disease, eco-
nomic collapse, communication, insect behavior, ecosystem desertification, and collective
wisdom. We will describe a model of economic collapse (this is a simplified version of a
model discussed by Janssen, Kohler and Scheffer (2003)).

Let xt equal the amount of some renewable resource available at time t, and let C
denote the maximum amount of that resource that could ever be available. Assume
that the resource replenishes at a rate equal to the current availability times the excess
capacity, (C − xt), and that a constant proportion α of the resource is consumed at any
given time. To complete the model, assume that a fixed amount of the resource A is
consumed independent of the current supply (more precisely whichever is lower of A or
xt is consumed). We can then write the change in xt as follows:

(7) ẋt = xt(C − xt)− αxt −min{A, xt}.

In Figure 8 we assume that C = 1, α = 0.25, and A = 0.05. Whenever the curve
is above zero, ẋt is positive, so the amount of resources available will increase and the
system will shift to the right along the curve. Conversely, when the curve is below zero, xt
will decrease. Values of xt for which ẋt = 0 are equilibria. For these parameters, there are
two interior equilibria as well as an equilibrium at xt = 0. Note that this last equilibrium
corresponds to the collapse of the society. Using the arrows along the horizontal axis as a
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Table 1. The tipping point typology.

Within Class Across Class
Direct

Contextual

guide, we can see that the equilibrium at 0.17 is unstable. Therefore, if the society were
producing xt = 0.2 it would be poised at a tipping point. One small change in behavior
would lead to either collapse or a new, stable equilibrium of higher productivity. This
tipping point is similar to the tipping point in the bandwagon process. We characterize
it as a direct tip because it results from a change in the state variable.

We can contrast this with a second type of tip that results form a change in a parameter,
what we call a contextual tip. Refer again to Figure 8. Changes in any of the three
parameters C, α, and A will shift the curve. For example, if we increase A, the fixed
amount of resources consumed independent of resource availability, the entire curve shifts
downward causing the two interior equilibria to converge. When A become sufficiently
large, the entire curve lies below the horizontal access. At that point, the interior stable
and unstable equilibria disappear, and only the collapse equilibrium remains.

Note then, the two fundamental differences between the tip caused by changing A and
the tip caused by changing xt. First, the change in A is a change in a parameter, not in
resource levels, xt. Tips can therefore arise not only because of actions but because the
environment shifts. The distinction between direct tips caused by changes in the state
versus contextual tips caused by changes in the environment surrounding the state will
form half of our typology. Second, the direct tip caused the system to move from one
equilibrium to another, while the contextual tip caused the set of equilibria to change.
Put differently, direct tips change where the system will go. Contextual tips change the
set of states where the system can go.

3. A Typology of Tipping Points

Now that we have formally defined tipping points, we proceed to break the set of all
tipping points up into categories that can help us to better understand when tips occur
and how to prevent or encourage them. In this section we split tipping points according
to the two binary distinctions that we’ve already discussed: tipping points are either
direct or contextual and either within class or across class. This creates four categories,
which are represented in Table 1. In Table 3, we present an application of the typology
applied to several examples described in the text along with some other well-known tips.
To determine if a particular tip is direct or contextual, identify the tipping and threshold
variables. If they are the same, it’s direct, if not, it’s contextual. To decide if a tip is
within or across class, examine the behavior before and after the tip. If they fall into the
same class, the tip is within class, if not, it is across class.
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3.1. Direct Tips. Our first category captures the special case when the threshold vari-
able yt equals the tipping variable xt.

A direct tip occurs when a gradual change in xt results in a discontinuous jump in
future values of that same variable.

That is, there is a distinguished value of our variable of interest so that any move away
from this special value has big consequences for the future of that same variable. This spe-
cial case covers many of the tipping points that social scientists study such as Schelling’s
tipping points into segregation and Jackson and Yariv’s diffusion tipping points. Below
we describe two subcategories of direct tipping points that arise frequently within social
systems: unstable equilibria and basin borders. We also describe a type of direct tips as-
sociated with chaotic systems that receives less attention but which also occurs in social
systems.

Unstable Equilibria. Earlier we wrote a common pool resource problem and a bandwagon
process as dynamical systems. In the first, the equilibrium was stable, in the latter,
one of the equilibria, the interior equilibrium, was unstable. In a stable equilibrium,
perturbations in the state self-correct. For example, in a perfect market if the price of a
commodity randomly rises above the equilibrium price, demand falls and supply increases
causing a surplus and a subsequent fall in prices. In contrast, at an unstable equilibrium,
small perturbations send the system off in a new direction, typically to a new equilibrium.
Many less mathematical conceptions of tipping points such as the Colliers’ notion of a
critical juncture, or moments of reorientation in which long term trajectories get set in
place (Collier and Collier, 1991), fall into this category.

Table 2. Game with two pure strategy Nash equilibria and one mixed.

A B
A 2,2 0,0
B 0,0 1,1

In game theory, equilibria can also be classified by their stability, with the caveat that
stability depends on how one characterizes the response behavior of the players. Here
we assume standard best response dynamics. Consider any two by two game with two
pure strategy equilibria and one mixed strategy equilibrium, such as the game specified
by the payoff matrix in Table 2. Both pure strategies are Nash Equilibria as is the mixed
strategy in which one-third of the population chooses A and two-thirds choose B. If
we assume a population of individuals playing this game against one another, and if we
assume that all of the individuals best respond, then the mixed strategy will be unstable.
As soon as one member of the population changes her action, she produces a direct tip.
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Basin Borders. Unstable equilibria occur at specific points, but social processes can also
exhibit regions of instability. This becomes inevitable in systems that involve multi-
dimensional actions. If one imagines a two dimensional space with two stable equilibria,
then instead of an unstable point, there will exist a curve or boundary line between the
two basins of attraction for the equilibria.4

In addition, social systems can also produce plateaus. Standing on top of the plateau
is relatively stable, but if you accidentally wander off the edge, you are shot off in a
new direction. To see how this can occur, consider a variant of our bandwagon model.
Suppose that each of two primary candidates, A and B, can count on twenty percent of
the electorate but that the other sixty percent are independent voters who change their
opinions randomly. For convenience, we can model the preferences of these other sixty
percent as a random walk on the line. Let Xt denote the total percentage of all voters
who prefer candidate A at time t. Assume that X0 = 50. According to the random walk
model, with probability 1

2
the proportion of the vote going to A will either increase or

decrease by one each period. To create tipping points, we add one more assumption.
Assume that if either candidate falls below 35% support, that her core supporters will
abandon her immediately. As long as the state stays in the interval (35, 65), the process
is random. However, once the process reaches 35 or 65, it becomes “locked-in” to a new
trajectory.

In this toy example, we build in the plateau with our assumption of core supporters.
Plateaus can also emerge when multiple forces are in play. Ellison and Fudenberg (2003)
construct a model of agglomeration that includes increasing returns to choosing the same
location as other firms, but there are price advantages from choosing the smaller market.
They show that these two forces combine to form plateaus and not peaks. A similar
logic may apply in the case of standards – the recent competition between HD-DVD and
BluRay high definition video discs being an example. Early on consumers chose one type
of player or the other based on personal preferences, price, availability, or their personal
prediction of which technology will become the future standard. This is like the random
walk stage of our toy example. Eventually, BluRay gained enough market share that it
became clear it would be the standard, and gradually demand for HD-DVD dropped off
altogether – the market crossed an absorbing barrier and was locked-in to the BluRay
standard. Both the threshold variable and the tipping variable are equal to the fraction
of BluRay adopters, so this is a direct tip. Arthur’s well known model of standards
formation shares this exact structure (Arthur, 1989).

In this toy plateau model, we can identify the tipping point exactly: it’s when one
independent voter pushes support for one of the candidates past the threshold. We can
therefore delineate the basins of attraction of the two equilibria. In the models drawn
from the literature – agglomeration of industries and the lock-in to BluRay, identification
of basins may be problematic. Rather than being a single point at which randomness

4An equilibrium’s basin of attraction characterizes the points that will lead to the equilibrium given
the dynamics.
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Figure 9. A Peak and A Plateau

gives way to inevitability, the transition proves more gradual. We return to this subtlety
in identifying tipping points in empirical data in more detail in the conclusion.

We should also add that so far we have ignored the fact that the actors in these systems
may have incentives to pull the system from one basin into another. Activists attempting
to produce political change, leaders of social movements, and entrepreneurs attempting
to create new markets all fit this description. Not all of these efforts succeed. In fact,
most don’t. They fail to reach the tipping point. That failure may have less to do with
the action taken then with the context.

Sensitivity to Initial Conditions: Chaotic Tipping Points. The third type of direct tip
falls under the broad category of chaos. Chaos, or extreme sensitivity to initial conditions,
is more colloquially understood as the butterfly effect – the notion that small changes
can have big consequences. We consider here deterministic chaotic systems. Because
chaotic systems are so sensitive, their behavior is effectively impossible to predict: any
error in measuring the initial state of the system will lead to different predicted outcomes
(Oremerod, 2001).

Often we think of chaotic systems as arising from the interaction of a huge number
of interacting variables, so many variables that a small change in one variable causes a
cascading string of changes in many other variables, so that it’s impossible to tell where
things are headed. The classic example of such a system is the weather. In fact, the term
“butterfly effect” came from the title of a talk given by mathematician and meteorologist
Edward Lorenz, “Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in
Texas?”

Focusing on the butterfly metaphor results in two common inferential errors. First,
rather than producing chaos, interactions between many coupled variables often leads
to stability. Think of the idealized behavior of a market in which trading and prices all
work together to bring the system to equilibrium. Second, for a system to create chaos
it need not have many moving parts. Minor modifications in our resource model from
section 2.3 produce a map known as the logistic map. In both models, the amount of
the resource available next period depends on the amount this period times a constant
minus that amount.



TIPPING POINTS 17

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

0 10 20 30 40 50

Figure 10. The logistic map (r = 0.38) for two nearby initial conditions

(8) xt+1 = rxt(1− xt).

The logistic map produces chaotic behavior for values of r above 3.57. Figure 10 shows
the first fifty periods for the logistic map when r = 3.8 for two nearby initial conditions.
The darker line shows the process for x = 0.5 and the lighter line shows the process
for x = 0.501. Initially, the two paths remain close but before long the small differences
multiply. It’s provocative to refer to social systems as “chaotic” but to date little evidence
has been found to suggest real chaos in social outcomes. However, for our purposes the
notion of “chaotic tipping points” can be a mental place holder for the idea that some
direct tips may steer a system from one equilibrium to another. We might think of these
as tips between two equilibria or two paths. Other tipping points might well lead to
more potential paths. For this to occur, the system has to be poised to move in several
possible directions.

One case where tips could go in many directions is in the formation of alliances. When
countries choose sides, be it in a war or an emissions agreement, the choice of a single
actor could result in multiple possible final configurations. We say this without any
particular case in mind and mindful of the fact that some coalitions will undoubtedly more
likely than others (Axelrod, 1995). Nevertheless, based entirely on the combinatorics,
thirty countries sitting on the fence create over a billion possible partitions, we believe
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it plausible that different actions would induce a variety of different alliances. Is this
chaos? Not exactly, but it is a direct tip that could produce a lot of different outcomes.

3.2. Contextual Tipping Points. So far we have examined direct tips, in which a
small change in a variable leads to large changes in that same variable. Now, we turn to
contextual tips. In a contextual tip, a change in one variable, typically a variable that
characterizes the environment, has a large effect on another variable. When economic
conditions worsen setting the stage for a political uprising, this creates a contextual tip
by creating an environment in which large social demonstrations can occur.

In our framework, contextual tipping points can be defined as the threshold values of
the system parameters. We can think of those system parameters as dials that control
how the system behaves – when we turn one of these dials past a tipping point, the realm
of possible outcomes for the system changes significantly. Recall that this was the case
in the resource model that we described previously.

A contextual tip occurs when a gradual change in a variable yt causes a discontinuous
jump in future values of some other variable xt.

Below we discuss two types of contextual tipping points. Physicists refer to these as
bifurcations and phase transitions. To avoid confusion and to link with large existing
literatures, we use the same terminology.

Bifurcations. The technical term for a contextual tipping point that results from changing
a single parameter is a bifurcation. At a bifurcation point, a dynamical system undergoes
a qualitative (topological) change in its dynamics. Consider the spread of a rumor, such
as the rumor that President Obama is not a United States citizen.5 We can describe the
spread of this rumor with a simple model. In this model, at any moment in time a given
person is either spreading the rumor or not. We assume that each person, regardless of
their type, has conversations with c people per day chosen at random from the entire
population. When someone spreading the rumor meets someone not spreading the rumor,
the rumor is passed on with probability p. Finally, each person exposed to the rumor
will spread it for D days before stopping, but a person who has stopped spreading the
rumor can be reactivated if he or she is exposed to the rumor again.

Let N denote the population size, It the number of people who are currently spreading
the rumor, and St the number who have yet to hear. In this model, the expected daily
increase in the number of people who have heard the rumor will equal the number of
conversations had by people who don’t know, cSt, times the probability that any given
conversation results in someone spreading the rumor, pIt/N .

5This was (is) a real rumor. In an Internet survey Berinsky (2011) found that 27% of respondents
believed that President Obama was born in another country.
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Combining terms, we get that the rate of new people spreading the rumor equals
pcStIt/N . The rumor will spread if this rate exceeds the rate at which people stop
spreading the rumor, which equals It/D. Otherwise, the rumor will die out. Thus, the
equation pcStIt/N > It/D or more simply

(9) pcDSt/N > 1

determines the long run dynamics of the system. If we assume that initially the pop-
ulation is large relative to the number of people actively spreading the rumor then St

approximately equals N , so the condition simplifies further to

(10) pcD > 1.

This equation contains three contextual tipping points. Increases in any of the param-
eters c, p, or D, can cause a rumor to shift from one that simply dies out, to one that
spreads across a large fraction of the population and remains pervasive. Changes in social
networking technology, the “juiciness,” or the political relevance of the rumor would all
be contextual changes that these variables might capture. Each of these is a contextual
tipping point because small changes in c, p, or D cause a discontinuous jump in future
states of It. The variables doing the work, c, p, or D, are the threshold variables, and
the variable doing the jumping, It, is the tipping variable.

Figure 1 illustrates one of the three contextual tipping points. The graph plots the
number of agents in a population of 1000 that are spreading the rumor over time starting
from 100 initial rumor spreaders. For each of the paths, each person has ten conversations
per day and each individual actively spreads the rumor for ten days, thus the tip in the
spreading probability occurs at p = .01. As the plot illustrates, as long as p < .01 the
rumor dies out, but as soon as the likelihood that a conversation results in transmission
of the rumor exceeds 1% the rumor suddenly becomes endemic. Further increases in p
gradually increase the eventual number of rumor spreaders, but the jump at p = .01 is
discontinuous.

In many cases, the parameters c, p, and D cross the contextual tipping point before
anything arrives to spread. The conditions may be ripe for an epidemic, like a gasoline
soaked pile of wood waiting for a spark. In this case, the “spark” is a direct tip that occurs
with the first telling, which then inevitably spreads because of the context. Watts and
Dodds (2007) identified this type of behavior when trying to predict individual influence
in a model of public opinion formation. They conclude, “The ability of any individual
to trigger a cascade depends much more on the global structure of the influence network
than on his or her personal degree of influence – that is, if the network permits global
cascades, virtually anyone can start one, and if it does not permit global cascades, nobody
can.” In our terms, once the contextual tipping point has been crossed, any individual
can trigger the direct tipping point, but before the contextual tipping point occurs, the
direct tip is nearly impossible.

We now revisit game theoretic models to make an obvious, but often unrecognized
point. Consider the game with payoffs given in Table 4. If the parameter r is less than
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Table 4. Game with a contextual tipping point.

A B
A 1,1 0,r
B 0,r 1,1

one, the game has three equilibria. Two stable pure strategies and one unstable mixed.
When the parameter r becomes larger than one, the game has a unique stable mixed
strategy. Thus, as r decreases the game has a classic bifurcation: the stable equilibrium
becomes unstable and two new stable equilibria appear.6

This phenomenon is not unique to these particular payoffs. In many game theoretic
models, existence results rely on certain necessary conditions in the parameters. When
those parameters fall below the thresholds, the equilibria being considered fail to exist
or become unstable. These thresholds are contextual tipping points. This example prob-
lematizes any hope of dismissing tipping points as a fringe informal concept. Contextual
tipping points are pervasive in game theoretic models. In fact, any time someone identi-
fies a binding condition for the existence of a particular equilibrium, she characterizes a
contextual tipping point.

Phase Transitions. In common usage, direct and contextual tipping points often arise
in the context of something spreading – a political uprising or even a disease. In such
situations, who interacts with whom, the structure of interaction, makes a large difference
on outcomes. The second primary class of contextual tipping points that we cover, called
phase transitions, concern the properties of the structure of interaction.7 In a phase
transition, that interaction structure undergoes a dramatic shift.

To see why interaction structures matter to such an extent, we will embed our simple
rumor model in a network. We will now distribute our population of people randomly
across a rectangular grid so that each cell is occupied by at most one person (some cells
may be vacant), with the probability of any given cell being occupied equal to p. To
keep things simple, we assume that people do not move from cell to cell. Suppose that
the rumor starts down in the lower left corner of our grid – if our grid were overlaid on
top of the contiguous forty-eight states this would be San Diego. Let’s assume that as
soon as a person hears the rumor they share it with any neighbors in adjacent cells to
the north, east, south, or west of their cell (but that’s it, no phone calls or emails). We
can then ask: what are the chances the rumor will spread all the way across the country
to the White House?

6Formally, the best responses in this game will be correspondences and not functions, but the under-
lying logic remains the same.

7In thermodynamics, phase transitions refer to changes of a thermodynamic system from one state
of matter to another (e.g. solid to liquid). The term phase transition is also used in graph theory and
percolation theory. A graph undergoes a phase transition if graphs of a certain size (number/density of
nodes or edges) have a certain property with very low probability and graphs of slightly larger size have
the property with much higher probability.
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The answer depends on p. When p is small, the grid is mostly empty, and the rumor
likely fades away. At the other extreme, if p = 1, then the whole grid is filled, and the
rumor will spread straight across from one side of the country to the other. Our intuition
tells us that as p increases, the chance the rumor makes it across the country should
smoothly increase from zero to one, but that intuition is wrong. Instead, the chance
remains near zero until p grows just larger than .59, then suddenly the chance jumps to
near one.8 The critical value, pc ≈ .59, is a contextual tipping point. If we allow for a
more complex interaction structure, say by including the possibility that the rumor can
jump long distances through phone calls or emails, then the contextual tipping point will
change (Jackson and Rogers, 2007; Lamberson, 2011).

This connection based notion of contextual tipping points resonates with accounts that
the Arab Spring and other uprisings have been made possible due to new technology
(Pollock, 2011). These technologies make people more connected and allow for ideas and
actions to percolate across the society in ways that were precluded, often purposefully,
under some regimes.

3.3. Within Class and Across Class Tips. We now turn to our second primary
distinction: within class tips and between class tips. We first characterize what we mean
by classes of outcomes. Wolfram (2002) distinguishes between four types of behaviors
of systems: they can produce stable points, cycles, randomness, and complexity. We
do not necessarily advocate Wolfram’s classification for social systems. True chaos, for
example, seems unlikely in the social world. We merely suggest that it provides useful
classifications for thinking about how tips can change the nature of social reality. That
said, we believe it to be true that some social systems do in fact approach equilibria –
certainly this is true for many markets. Other social systems approximate orbits. The
Democratic Party held a majority of seats in the United States Senate for over three
decades. Then in 1980, the Republican Party won a majority. In the intervening years,
the parties have alternated who has been in office. The business cycle provides another
familiar example. And, finally, it is also true that some social science time series, such
as stock market prices, appear close to random (Malkiel, 1985).

Wolfram’s final class, complexity, can be characterized as having structure but being
difficult to explain or predict (Mitchell, 2009; Page, 2010). Many social systems exhibit
complexity and often it can make sense to think of a system in flux as complex. Coun-
tries that overthrow dictators often enter a period of confusion, after which they either
transition to another dictator, to democracy, or to some other form of government. We
can think of that moment of overthrow as the political system tipping from equilibrium
to complex. By that we mean, that at the moment of overthrow, and this was especially
true in the case of Libya, the political system can be characterized as having multiple,

8In an infinitely large grid, the approximate value of the tipping point is .59274621 (Newman and Ziff,
2000). Physicists call this the percolation threshold of the square lattice (Stauffer and Aharony, 1994).
You can try this out yourself using the “Fire” model (Wilensky, 1997) in the models library of the freely
available software package NetLogo (Wilensky, 1999).
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diverse actors interacting who produce unpredictable, hard to describe collective behav-
ior. Often, the political system later transitions to a new equilibrium. These tips can be
classified as tips between classes. In contrast, when the United State Senate tips from
a Republican to a Democratic majority, it tips within class – from one equilibrium to
another.

To show how a system can tip from one type of outcome to another and to show that
it can happen in the context of a very simple model, we return to the logistic equation,

(11) xt+1 = rxt(1− xt).

Here we consider a sequence of contextual tips. When r < 1, the state, xt goes to zero.
When r lies in the interval [1, 3), xt converges to an equilibrium value of r−1

r
. Social

scientists would not consider r = 1 to be a tipping point. Nor should they. It’s merely a
kink in the comparative statics curve. However, once r increases past three, but not too
far, the state will enter a periodic orbit. Thus, we have a contextual tip in the class of
the outcome. An equilibrium process becomes a cycle. When r increases beyond 3.45,
the period of the orbit increases to eight. Further increases lead to doublings of the orbit.
Eventually, when r exceeds 3.57, the equation becomes chaotic. This simple equation
therefore exhibits two different tips between class: first from stable to periodic and then
from periodic to chaotic.

4. Measuring Tips as Entropy Reduction and Entropy Divergence

We now turn to the question of how to identify tipping points using formal measures.
By definition, a tipping point occurs when gradually changing a variable results in a
discontinuous jump in the future value of that variable or some other related variable.
Note that the large change need not and often doesn’t happen immediately. To measure
the extent of a tip, we measure the change in the expected distribution over the state of
the system. To explain what we mean, we return to an early example. Recall our example
of a primary election from section 3.1. Initially, the probability of each candidate receives
the nomination is fifty percent, but once either candidates’ support falls below 35% the
probability that the other candidate will be nominated jumps to one. A small action –
one more person choosing their candidate of choice – results in a substantial shift in the
likely long term state of the system.

In that example, the tip reduces the amount of uncertainty. In general, it’s also
possible for a tip to increase the amount of uncertainty. Therefore, to measure how much
a systems tips, and in fact whether a tipping point exists, we need to capture changes
in the distribution over possible outcomes and not just reductions in uncertainty. We
do so as follows: Suppose that the stochastic process {Xt} has a discrete set of possible
long-run outcomes, A = {a1, . . . , an}. These can be thought of as equilibria, but they
might also be periodic orbits, complex regimes, or chaotic paths. We need only that as
t → ∞ the probability that Xt → a for some a ∈ A approaches one. In words, the
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process always ends up converging to a member of A. For every point x in the state
space and time s, we can define a probability distribution Px,s on A, by

(12) Px,s(a) = P (Xt → a|Xs = x).

The distribution Px,s describes the possible long run outcomes, given that at time s
the process is in state x. We would like to quantify the amount of uncertainty in this
distribution: are there many possible outcomes or are we locked-in to a single path. We
do this using the Shannon entropy of the random variable (A,Px,s), or just entropy for
short. The entropy of (A,Px,s) is defined by

(13) H(A,Px,s) = −
n∑

i=1

Px,s(ai) logPx,s(ai),

where Px,s(ai) logPx,s(ai) is taken to be 0 if Px,s(ai) = 0. At one extreme, if every ai is
equally likely so the outcome is maximally uncertain, then the entropy is log n. At the
other extreme, if the outcome is certain to be equal to ai, then the entropy is zero.

A particular state is “tippy” if the system is likely to experience a significant decrease
or increase in uncertainty after that state. By this measure, in the random walk with
absorbing barriers discussed in section 3.1, a state at the edge of one of the basins of
attraction would be very tippy. There is a 50% chance that in the next time step the
system will become locked-in to a single outcome and therefore experience a sudden
drop in uncertainty. We can capture this intuition formally. Equation (13) gives the
uncertainty over outcomes when the process is in state xs. We can also calculate the
expected uncertainty in the next time step, s + 1, by summing up the entropy for all
possible states x′s+1 and multiplying by the probability of those states conditional on Xs:

(14)
∑
x′

P (Xs+1 = x′|Xs)H(A,Px′,s+1).

We define the entropy ratio τ of a state xs to be the ratio of (13) to (14):

(15) τ(xs) =
H(A,Px,s)∑

x′ P (Xs+1 = x′|xs)H(A,Px′,s+1)
.

If we expect a state to result in a significant decrease in uncertainty, so (14) is much
smaller than (13), and therefore τ(xs) is large, we can characterize that state as tippy.9

The most tippy any state could be is log |A|. This happens when at one time step, all
of the outcomes in A are possible and equally likely, but we know with certainty that
in the next time step the eventual outcome will be completely determined. Notice that
this measure has the added feature that if it takes on a value close to zero, then it means
that the system has tipped from uncertain to certain.

9Note that we can make these same calculations relative to changes in other variables to measure
contextual tips.
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# Red Balls Chosen Initial Ball = Red Initial Ball = Blue

0 0 0.25
1 0.04 0.21
2 0.07 0.18
3 0.11 0.14
4 0.14 0.11
5 0.18 0.07
6 0.21 0.04
7 0.25 0

Entropy 2.133 2.133

Figure 11. Entropy in Pólya Process After First Draw

The parameter τ(xs) captures the tippiness of the system, moreover, if τ(xs) > 1 then the
system tips toward certainty. If τ(xs) < 1, the system tips toward uncertainty.

What we call tipping toward uncertainty nicely captures across class tips from equilib-
rium to periodic, complexity, or chaos. In those cases, the uncertainty about the future
state of the system would increase.

Tipping Points vs Path Dependence. Conceptually, a tip – an immediate change in the
future state of affairs – differs from path dependence – a sequence of outcomes changing the
future state. As we now show, the τ(xs) measure of tippiness cab help to distinguish the
concept of path dependence from tippiness (Page, 2006). At a tipping point, probabilities
change abruptly. In a path dependent process, the probabilities might change gradually
along the path. To show this, we can apply our measure to the Pólya Process, the
canonical example of a path dependent process. The Pólya Process starts with one red
and one blue ball in an urn. Here, we consider a seven period process. In each period,
a ball is selected, noted and returned to the urn with another ball of that same color.
After seven periods, there are eight possibilities: any number of red balls from zero to
seven might be selected. With only a little effort it can be shown that each of these eight
possibilities is equally likely. Therefore, using the logarithm base two for our measure,
this process has an initial entropy equal to three.10

The Pólya Process is most tippy at its initial state. To compute τ we need only
compute the average entropy in the next state – after the first ball is chosen. That ball
could be either red or blue. Figure 4 gives the probability distribution over outcomes and
the entropy for each of the two possible outcomes, which equals 2.133. Taking the initial
entropy of three and dividing it by the new expected entropy gives a tippiness equal to
1.4.

By comparison, consider a different process that has eight equally likely outcomes but
that after the first period, one of those states will be the end state with probability

1023 = 8. Therefore, the log base two of eight equals three.
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three-fourths and another will be the end state with probability one-fourth. For that
process the entropy will fall from three to around 0.8, so τ will equal approximately 3.7.
In general then, a path dependent process could “tip” but only if one step on that path
proved extremely important in determining the fate of the system. More often, and in
many of the cases that we think of as path dependent, each step along the way could
have a small effect on the end state of the process. In the Pólya Process, that’s certainly
the case. No one draw seals the future. The future depends on an accumulation of the
past.

5. Conclusion

In this paper, we define tipping points formally, present a typology for categorizing
them, and develop a measure of tippiness. Our typology highlights the tendency to
focus on direct tipping points rather than contextual ones when explaining how events
unfold, despite the fact that in our view contextual tips may be more important given
that contextual tips often make direct tips possible. Attaching undue importance to the
direct tip seems to us an example of what social psychologists refer to as the fundamental
attribution error (Ross, 1977). For example, recently Israel witnessed the largest protests
in its history as a country in response to rising costs of living. The most popular account
of the beginnings of these protests focuses on the actions of a single woman, who set up
a tent on a boulevard in Tel Aviv after being evicted from her apartment. As the story
goes, this woman’s act of protest, along with her creation of a Facebook page encouraging
others to join her, caused the resulting wave of protest (Broner, 2011). No doubt this
is true to an extent. Her protest was the direct tip that set the ball in motion, but
more importantly, prior to her actions we suspect there were changes in the conditions
in Israel – changes in the costs of living, changes in people’s attitude towards the state,
and changes in the communication infrastructure – that made this explosion of public
sentiment possible. In other words, there was a contextual tip that preceded the direct
tip. Once this contextual tipping point was crossed, the conditions for protest were set
and just waiting for a direct tip to come along. With this frame in mind the actions of
the initial protester are less significant. Had she not initiated the direct tip, most likely
another disgruntled citizen would have. To paraphrase McGeorge Bundy, we may be
looking at streetcars.

Awareness of the distinction between direct and contextual tips changes the way we
think about intervening in social systems. A leader wishing to prevent protests in a
nation cannot do so effectively by focusing on the direct tips. Like so many sparks in a
pile of dry leaves, if the context is set eventually one will start a fire. Similarly, marketers
and social organizers hoping to cause a tip, rather than focusing on finding “influentials”
to create a direct tip as is often advocated (Keller and Berry, 2003), might do better to
try and create contextual changes to help their products or ideas spread, to create the
conditions for an active tip (Aral and Walker, 2011; Bakshy et al., 2011).
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If a tip does occur, can it be identified empirically. Yes – but doing so requires a model,
and proper measurement of the appropriate variable. Because identifying a tipping point
says something about why we observe a particular outcome, claims of tipping point
behavior require a test of the tipping mechanism, not simply a measure of the result.
The typology of tipping points described in Section 3 can help. Before arguing that
a tipping point is responsible for some observed dynamics, the type of tipping point
should be identified. To identify a direct tipping point requires a model with an unstable
equilibrium or a basin border. Contextual tipping points require a causal link between a
threshold variable and a tipping variable along with a qualitative change (a bifurcation
or a phase transition).

To summarize, the term “tipping point” has been tossed about with increasing fre-
quency and come to mean different things to different people. We show that the concept
can be formally defined and can be categorized in ways that are useful to social scientists
in our attempts to make sense of the world. The distinction between direct tips: actions
that have lots of positive feedbacks, and contextual tips: changes in variables that set
the stage for large changes to the system strikes us as particularly important. Further,
one can even apply measures of tippiness, such as the one that we propose here that
captures whether uncertainty over outcomes increases or decreases, to compare systems
or even institutions to one another. This capacity to measure tips should result in deeper
knowledge of how, why, and when tips occur.
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Appendix

As an alternative, one could measure the change in the distribution using Kullback-
Leibler divergence, which captures how much the entropy changes.

(16) DKL(A,Px,s || Px,s+1) = −
n∑

i=1

Px,s(ai) log
Px,s(ai)

Px,s+1(ai)

First, notice that if the probability distribution does not change from time period s to
time period s+ 1, then the Kullback-Leibler divergence equals zero. Second, notice that
the Kullback-Leibler divergence requires that Px,s+1(ai) > 0 if Px,s(ai) > 0, otherwise
it takes on value infinity. Thus, this measure fails to capture tippiness if all of the
uncertainty gets resolved at a tipping point. Note also that Kullback-Leibler is not
symmetric. To get around these twin problems of symmetry and undefinability, Jensen
and Shannon created a distribution M which equals the average of the two distributions
under comparison. The Jensen-Shannon divergence, often called the information radius
equals the average of the distances of the two distributions from the mean.

(17) DJS(A,Px,s || Px,s+1) = DKL(A,Px,s ||M) + DKL(A,Px,s ||M)

where M = 1
2
(Px,s + Px,s+1).

The Jensen-Shannon measure suffers from being a bit complicated . A computationally
simpler alternative is to take the total variation distance.

(18) DV (A,Px,s, Px,s+1) =
1

2

n∑
i=1

| Px,s(ai)− Px,s+1(ai) |

This measure has the disadvantage of taking value only in the interval [0, 1], so it
cannot distinguish the dimensionality of tips. In sum, we believe that in those cases
where a tip reduces uncertainty, and this covers many of the tips of interest to social



30 PJ LAMBERSON AND SCOTT E. PAGE

science, that our measure tau may be sufficient. However, in other cases, it will make
sense to use the Jensen-Shannon measure.
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